Volume 33 Issue 3
May  2016
Turn off MathJax
Article Contents
XIN Haipeng, WANG Jianyao, ZHOU Zhiqin, HE Shuli, ZENG Jianguo, FU Zhenghua, SUN Fuquan. The Application of Phosphate Cement Slurry Used in Cementing In-situ Combustion Reservoir Section of Well X in LKQ Area[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(3): 73-77,83. doi: 10.3969/j.issn.1001-5620.2016.03.015
Citation: XIN Haipeng, WANG Jianyao, ZHOU Zhiqin, HE Shuli, ZENG Jianguo, FU Zhenghua, SUN Fuquan. The Application of Phosphate Cement Slurry Used in Cementing In-situ Combustion Reservoir Section of Well X in LKQ Area[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(3): 73-77,83. doi: 10.3969/j.issn.1001-5620.2016.03.015

The Application of Phosphate Cement Slurry Used in Cementing In-situ Combustion Reservoir Section of Well X in LKQ Area

doi: 10.3969/j.issn.1001-5620.2016.03.015
  • Received Date: 2015-12-09
  • Publish Date: 2016-05-31
  • In-situ combustion and fire-flooding have been done by injecting air into the well X in TH oilfield to try to develop the thick oil resources effectively. In this area the reservoir formations have high permeability and mud losses into the formations have occurred frequently before, resulting in poor cementing job quality. Phosphate cement has been chosen for use in well cementing because this cement is resistant to CO2 corrosion and has good high temperature performance, and the strength of the set phosphate cement measured by ultrasonic sound develops faster. The phosphate cementing slurries are formulated with these additives:phosphate cement BCM-600S, filter loss reducer BCF-600L, cementing retarder BCR-600S and defoamer G603. Laboratory evaluation demonstrates that the phosphate cement slurries are resistant to high temperatures to 550℃ when set, and their high temperature strength can last for a long time. The whole length of the well X was cemented with the phosphate cement slurries, 93.8% of the hole section has been cemented excellently. The phosphate cement can be used in other cementing operations.

     

  • loading
  • 李早元,伍鹏,吴东奎, 等. 稠油热采井固井用铝酸盐水泥浆体系的研究及应用[J]. 钻井液与完井液, 2014, 31(5):71-74. LI Zaoyuan, WU Peng, WU Dongkui, et al. Study on and application of aluminate cement slurry in cementing heavy oil thermal recovery well[J]. Drilling Fluid & Completion Fluid,2014, 31(5):71-74.
    沙林浩, 高永会, 燕平, 等. 河南油田新庄、杨楼区块稠油热采井固井水泥浆[J]. 钻井液与完井液, 2007, 24(5):41-43. SHA Linhao, GAO Yonghui, YAN Ping, et al. Cement slurry used in heavy crude thermal production wells in Xinzhuang,Yanglou Blocks in He'nan Oilfield[J]. Drilling Fluid & Completion Fluid, 2007, 24(5):41-43.
    王学良. 井楼稠油浅井固井技术[J]. 钻井液与完井液, 2006, 22(6):81-82. WANG Xueliang. Jinglou heavy crude shallow well cementing technology[J]. Drilling Fluid & Completion Fluid, 2006, 22(6):81-82.
    罗健生, 王雪山, 莫成孝, 等. 南堡35-2油田保护储层钻井液完井液优化设计[J]. 钻井液与完井液, 2005, 19(6):43-45. LUO Jiansheng, WANG Xueshan, MO Chengxiao, et al. Optimization design of drilling fluid and completion fluid for reservoir protection in Nanbu 35-2 Oilfield[J]. Drilling Fluid & Completion Fluid, 2005, 19(6):43-45.
    郭辛阳, 步玉环, 郭胜来, 等. 耐CO2腐蚀磷铝酸盐固井水泥浆的研制[J]. 钻井液与完井液, 2014, 31(5):67-70. GUO Xinyang, BU Yuhuan, GUO Shenglai, et al. Development and performance of CO2 resistant compound cementing material[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):67-70.
    WANG Y Q, ZHOU M, NIE J. Application status and development trend of FOR technology[J]. Fault-Block Oil & Gas Field. 2010, 17(5):628-631.
    尹虎, 钟守明, 刘辉, 等. 稠油井火驱开发固井水泥浆性能评价与应用[J]. 油气地质与采收率, 2013, 20(4):99-101. YIN Hu, ZHONG Shouming, LIU Hui, et al. Study and application of cement system for in-situ combustion in heavy oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(4):99-101.
    尹虎, 刘辉, 李黔,等. 新疆油田火烧油层井水泥石抗CO2腐蚀试验研究[J]. 石油天然气学报, 2012, 34(8):120-122. YIN Hu, LIU Hui, LI Qian, et al. Experimental study on CO2 corrosion resisting of set cement for in-situ combustion well(ISC) in Xinjiang Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(8):120-122.
    解光亮, 周晔. 羟基磷灰石的制备及其热稳定性研究[J]. 山西大学学报:自然科学版, 2006, 29(3):283-286. XIE Guangliang, ZHOU Ye. Preparation of nanohydroxyapatite and research of its thermal stability[J]. Journal of Shanxi University(Natural Science Edition), 2006, 29(3):283-286.
    刘勇, 陈晓银. 氧化铝热稳定性的研究进展[J]. 化学通报, 2001(2):65-70. LIU Yong, CHEN Xiaoyin. Advance in improving the thermal stability of alumina[J]. Chemistry, 2001(2):65-70.
    苏秋成, 陈佩丽, 张少鸿, 等. 勃姆石热转化过程的原位表征与分析[J]. 无机化学学报, 2012, 28(11):2280-2284. SU Qiucheng, CHEN Peili, ZHANG Shaohong, et al. In situ characterization and analysis on the thermal transformation of boehmite[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11):2280-2284.
    张玉平, 杨远光, 宋元洪, 等. 超高温超高密度防气窜水泥浆[J]. 钻井液与完井液, 2015, 32(4):51-54. ZHANG Yuping, YANG Yuanguang, SONG Yuanhong, et al. Ultra high temperature and ultra high density cement slurry with gas-channeling inhibition[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):51-54.
    黄柏宗. 紧密堆积理论的微观机理及模型设计[J]. 石油钻探技术, 2007, 35(1):5-12. HUANG Bozong. Microscopic mechanisms and model design of close packing theory[J]. Petroleum Drilling Techniques, 2007, 35(1):5-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (620) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return