Citation: | TENG Dayong, DING Qiuwei, JIN Xin, et al.Performance comparison and selection of a fracturing fluid suitable for high temperature offshore reservoirs[J]. Drilling Fluid & Completion Fluid,2025, 42(4):546-553 doi: 10.12358/j.issn.1001-5620.2025.04.015 |
[1] |
范白涛, 陈峥嵘, 姜浒, 等. 中国海油非常规和海上低渗储层压裂技术现状与展望[J]. 中国海上油气,2021,33(4):112-119.
FAN Baitao, CHEN Zhengrong, JIANG Hu, et al. Status and prospect of fracturing technology for CNOOC unconventional and offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2021, 33(4):112-119.
|
[2] |
滕大勇, 范友泉, 丁秋炜, 等. 一种多功能悬浮浓缩压裂液及其制备方法: CN202210045880.9[P]. 2022-01-17.
TENG Dayong, FAN Youquan, DING Qiuwei, et al. A multifunctional suspension concentrated fracturing fluid and its preparation method: CN202210045880.9[P]. 2022-01-17.
|
[3] |
刘雨舟, 张志坚, 王磊, 等. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用[J]. 石油与天然气化工,2022,51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012
LIU Yuzhou, ZHANG Zhijian, WANG Lei, et al. Research progress of variable viscosity slick water in China and its application in unconventional gas reservoi rs in Sichuan and Chongqing[J]. Chemical Engineering of Oil and Gas, 2022, 51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012
|
[4] |
段贵府, 胥云, 卢拥军, 等. 耐超高温压裂液体系研究与现场试验[J]. 钻井液与完井液,2014,31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020
DUAN Guifu, XU Yun, LU Yongjun, et al. Study and field application of an ultrahigh temperature fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020
|
[5] |
张宸. 海上油田高效施工的压裂液体系及配套工艺[J]. 河南科技,2021,40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040
ZHANG Chen. Fracturing fluid system and supporting technology for efficient construction in offshore oilfields[J]. Henan Science and Technology, 2021, 40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040
|
[6] |
许田鹏, 李梦, 赵健, 等. 海水基胍胶压裂液优选及现场应用[J]. 石油化工应用,2021,40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023
XU Tianpeng, LI Meng, ZHAO Jian, et al. Optimization and application of seawater-based guar gum fracturing fluid[J]. Petrochemical Industry Application, 2021, 40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023
|
[7] |
严芳芳. 有机锆交联聚合物和羟丙基瓜胶压裂液及流变动力学研究[D]. 上海: 华东理工大学, 2014.
YAN Fangfang. Study on organic Zirconium crosslinked polymer and hydroxypropyl guar fracturing fluids and their rheokinetics[D]. Shanghai: East China University of Science and Technology, 2014.
|
[8] |
张昀, 李兆敏, 刘己全, 等. 疏水缔合聚合物压裂液稠化剂LP-3A的研究[J]. 钻井液与完井液,2016,33(5):119-123.
ZHANG Yun, LI Zhaomin, LIU Jiquan, et al. Study on a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):119-123.
|
[9] |
赵万伟, 李年银, 王川, 等. 酸性交联压裂液性能对比研究[J]. 石油与天然气化工,2019,48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015
ZHAO Wanwei, LI Nianyin, WANG Chuan, et al. Comparative research on performances of acidic fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2019, 48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015
|
[10] |
滕大勇, 金鑫, 丁秋炜, 等. 耐高温海水基压裂液聚合物稠化剂流变性能[J]. 石油化工,2024,53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010
TENG Dayong, JIN Xin, DING Qiuwei, et al. Rheological properties of polymer thickener for high-temperature resistant seawater-based fracturing fluid[J]. Petrochemical Technology, 2024, 53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010
|
[11] |
张晓琪, 汤鲁馨, 方波, 等. P(MAA/AMPS/DMAM/NVCL)稠化剂的制备及其交联过程流变性能分析[J]. 油田化学,2020,37(3):397-402.
ZHANG Xiaoqi, TANG Luxin, FANG Bo, et al. Rheological properties of P(MAA/AMPS/DMAM/NVCL) thickener solution and its crosslinking process[J]. Oilfield Chemistry, 2020, 37(3):397-402.
|
[12] |
伊卓, 刘希, 方昭, 等. 耐温抗盐驱油聚合物溶液黏弹性[J]. 应用化学,2017,34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118
YI Zhuo, LIU Xi, FANG Zhao, et al. Viscoelasticity of temperature-tolerant and salt-resistant flooding polymer solutions[J]. Chinese Journal of Applied Chemistry, 2017, 34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118
|
[13] |
韩非. 聚合物缓释交联体系的研发及在压裂液中的应用[D]. 西安: 陕西科技大学, 2022.
HAN Fei. Development of polymer slow-release crosslinking system and application in fracturing fluid[D]. Xi'an: Shanxi University of Science & Technology, 2022.
|
[14] |
苏禹. 抗盐聚合物粘弹特性及驱油效果评价[D]. 大庆: 东北石油大学, 2022.
SU Yu. Evaluation of viscoelastic properties and oil displacement effect of salt resistant polymer[D]. [S. l. ]: Northeast Petroleum University, 2022.
|
[15] |
张昀. 低分子聚合物压裂液体系流变性能及携砂规律研究[D]. 东营: 中国石油大学(华东), 2016.
ZHANG Yun. Experimental study on rheological properties and proppant carrying capability of low molecular polymer fracturing fluid[D]. Dongying: China University of Petroleum(East China), 2016.
|
[16] |
徐文江, 肖茂林, 孙兴旺, 等. 海上低渗透油田水平井多级压裂先导试验[J]. 中国海上油气,2017,29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014
XU Wenjiang, XIAO Maolin, SUN Xingwang, et al. Pilot test of multi-stage fracturing technology for horizontal wells in offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2017, 29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014
|
[17] |
刘鹏, 许杰, 徐刚, 等. 渤中25-1油田低渗透储层水平井分段压裂先导试验[J]. 油气井测试,2018,27(3):52-57.
LIU Peng, XU Jie, XU Gang, et al. Pilot test of horizontal well staged fracturing for low permeability reservoirs in BZ25-1 oilfield[J]. Well Testing, 2018, 27(3):52-57.
|
[18] |
何婷婷. 压裂返排液重复再利用技术室内实验研究[D]. 西安: 西安石油大学, 2016.
HE Tingting. The laboratory experimental studies on fracturing flowback fluid recycling and reuse[D]. Xi'an: Xi'an Shiyou University, 2016.
|
[19] |
吴越, 周怡, 蔡远红, 等. 压裂返排液中残余硼交联剂掩蔽方法[J]. 石油钻采工艺,2017,39(5):652-657.
WU Yue, ZHOU Yi, CAI Yuanhong, et al. A masking method used for the Boron crosslinker remained in the backflow of fracturing fluid[J]. Oil Drilling & Production Technology, 2017, 39(5):652-657.
|
[20] |
宫大军,吴志明,白岩,等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261.
GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261
|