Volume 42 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
LI Xiaolin, WANG Qike, XU Yixin, et al.Preparation and performance evaluation of a solid anti-channeling toughening agent[J]. Drilling Fluid & Completion Fluid,2025, 42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014
Citation: LI Xiaolin, WANG Qike, XU Yixin, et al.Preparation and performance evaluation of a solid anti-channeling toughening agent[J]. Drilling Fluid & Completion Fluid,2025, 42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014

Preparation and Performance Evaluation of a Solid Anti-channeling Toughening Agent

doi: 10.12358/j.issn.1001-5620.2025.04.014
  • Received Date: 2025-02-10
  • Rev Recd Date: 2025-05-08
  • Publish Date: 2025-07-31
  • Styrene butadiene latex used in oil well cement has several shortcomings such as poor storage stability, high concentration required and high labor intensity in cement slurry mixing, etc. To deal with these problems, a solid powdered re-dispersible latex SISBR has been synthesized by introducing sodium p-styrenesulfonate and itaconic acid into the styrene butadiene latex to improve its high temperature stability, salt resistance and hydrophilicity. The effects of the amount of the itaconic acid on the properties of the latex were studied. The latex powders were characterized with IR spectroscopy, Zeta potential measurement, transmission electron microscope and ultraviolet-visible light absorption spectrum, and the high temperature stability and salt resistance of the latex SISBR were evaluated. Laboratory experimental results show that the modified carboxylated styrenesulfonate latex powders can be evenly dispersed in water and have good high temperature stability and excellent dispersibility. The introduction of the sulfonic acid groups and carboxyl groups increases the rigidity of the latex molecules. At an itaconic acid concentration of 3%, SISBR stays stable at 260 °C or higher and has excellent salt resistance. SISBR powders can evenly disperse in a cement slurry and can significantly improve the rheology of the cement slurry. SISBR also has good filming property and filling effect. A set cement containing 2.4% SISBR-3 latex powders can have its mechanical property most remarkably improved, and the cement slurry modified with the SISBR-3 has excellent elasticity, toughness and anti-channeling property.

     

  • loading
  • [1]
    李明, 刘萌, 杨元意, 等. 碳酸钙晶须与碳纤维混杂增强油井水泥石力学性能[J]. 石油勘探与开发,2015,42(1):94-100. doi: 10.11698/PED.2015.01.12

    LI Ming, LIU Meng, YANG Yuanyi, et al. Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber[J]. Petroleum Exploration and Development, 2015, 42(1):94-100. doi: 10.11698/PED.2015.01.12
    [2]
    赵金, 张遂安, 马东民, 等. 注二氧化碳提高煤层气采收率数值模拟[J]. 天然气与石油,2012,30(1):67-70. doi: 10.3969/j.issn.1006-5539.2012.01.020

    ZHAO Jin, ZHANG Suian, MA Dongmin, et al. Numerical simulation study on carbon dioxide injection to enhance CBM recovery[J]. Natural Gas and Oil, 2012, 30(1):67-70. doi: 10.3969/j.issn.1006-5539.2012.01.020
    [3]
    SILVA F D A, MOBASHER B, FILHO R D T. Cracking mechanisms in durable sisal fiber reinforced cement composites[J]. Cement and Concrete Composites, 2009, 31(10):721-730. doi: 10.1016/j.cemconcomp.2009.07.004
    [4]
    屈季辉. 防气窜固井技术应用[J]. 石化技术,2018,25(1):12. doi: 10.3969/j.issn.1006-0235.2018.01.008

    QU Jihui. Application of gas channeling prevention cementing technology[J]. Petrochemical Industry Technology, 2018, 25(1):12. doi: 10.3969/j.issn.1006-0235.2018.01.008
    [5]
    龙丹, 程小伟, 时宇, 等. 微细橡胶粉对油井水泥基复合材料性能的影响[J]. 硅酸盐通报,2015,34(9):2629-2633,2638.

    LONG Dan, CHENG Xiaowei, SHI Yu, et al. Properties of oil well cement-based composite with minute rubber powder[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9):2629-2633,2638.
    [6]
    李文建, 姚晓, 王太聪. 国外胶乳水泥固井技术[J]. 石油钻探技术,1997(2):35-37.

    LI Wenjian, YAO Xiao, WANG Taicong. Latex cement cementing technology abroad[J]. Petroleum Drilling Techniques, 1997(2):35-37.
    [7]
    张松. 固体胶乳粉改善水泥石性能试验研究[D]. 成都: 西南石油大学, 2012.

    ZHANG Song. Experimental study on performance improvement of cement stone by solid latex powder[D]. Chengdu: Southwest Petroleum University, 2012.
    [8]
    于林, 谭慧静, 任阳, 等. 三高条件对弹韧性水泥浆性能的影响及短期腐蚀机理[J]. 钻井液与完井液,2023,40(2):222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011

    YU Lin, TAN Huijing, REN Yang, et al. Study on the influence of elastic toughness cement slurry performance and short-term corrosion mechanism under HPHTHS conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011
    [9]
    田野, 宋维凯, 侯亚伟, 等. 大温差低密度水泥浆性能研究[J]. 钻井液与完井液,2021,38(3):346-350.

    TIAN Ye, SONG Weikai, HOU Yawei, et al. Study on performance of Low-Density cement slurry at big temperature differences[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):346-350.
    [10]
    俞嘉敏, 李明, 靳建洲, 等. 固井水泥石增韧材料的研究进展[J]. 硅酸盐通报,2017,36(9):3013-3019.

    YU Jiamin, LI Ming, JIN Jianzhou, et al. Research progress of Toughening-Enhancing materials in oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9):3013-3019.
    [11]
    雷鑫宇, 张直建, 焦利宾, 等. 新型胶乳的合成及其在实心低密度水泥中的应用研究[J]. 精细石油化工进展,2014,15(3):1-3,18. doi: 10.3969/j.issn.1009-8348.2014.03.001

    LEI Xinyu, ZHANG Zhijian, JIAO Libin, et al. Synthesis of a novel latex and its application in solid low-density cement[J]. Advances in Fine Petrochemicals, 2014, 15(3):1-3,18. doi: 10.3969/j.issn.1009-8348.2014.03.001
    [12]
    齐奔, 付家文, 孙勤亮, 等. 一种抗盐抗高温非离子型防窜丁苯胶乳[J]. 钻井液与完井液,2016,33(2):79-83.

    QI Ben, FU Jiawen, SUN Qinliang, et al. High temperature salt resistant nonionic anti-channeling styrene butadiene latex[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):79-83.
    [13]
    郭锦棠, 王泽辉, 杜江波, 等. 由两种不同功能单体制备的油井水泥胶乳性能评价[J]. 天津大学学报(自然科学与工程技术版),2019,52(8):843-848.

    GUO Jintang, WANG Zehui, DU Jiangbo, et al. Performance evaluation of oil well cement latexes prepared with two different functional monomers via emulsion polymerization[J]. Journal of Tianjin University Science and Technology, 2019, 52(8):843-848.
    [14]
    王其可, 李小林, 肖尧, 等. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价[J]. 钻井液与完井液,2024,41(1):112-118. doi: 10.12358/j.issn.1001-5620.2024.01.013

    WANG Qike, LI Xiaolin, XIAO Yao, et al. Preparation of a high temperature-and Salt-Resistant styrene butadiene latex under the action of composite emulsifiers and the performance evaluation thereof[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):112-118. doi: 10.12358/j.issn.1001-5620.2024.01.013
    [15]
    郭锦棠, 张振光, 于永金, 等. 聚丁二烯基胶乳水泥增韧剂的制备及性能评价[J]. 天津大学学报(自然科学与工程技术版),2017,50(3):262-267.

    GUO Jintang, ZHANG Zhenguang, YU Yongjin, et al. Preparation and properties evaluation of Polybutadiene-Based latex cement toughener[J]. Journal of Tianjin University Science and Technology, 2017, 50(3):262-267.
    [16]
    齐奔, 杜滨, 高雪晴, 等. 油井水泥用胶乳的研究进展[J]. 石油化工应用,2016,35(6):6-9. doi: 10.3969/j.issn.1673-5285.2016.06.002

    QI Ben, DU Bin, GAO Xueqing, et al. Research progress of latex for oil well cement[J]. Petrochemical Industry Application, 2016, 35(6):6-9. doi: 10.3969/j.issn.1673-5285.2016.06.002
    [17]
    祝国伟, 谢荣斌, 刘伟, 等. 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用[J]. 合成化学,2023,31(10):798-805.

    ZHU Guowei, XIE Rongbin, LIU Wei, et al. Synthesis of anionic styrene butadiene latex powder and its application in oil well cement[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(10):798-805.
    [18]
    徐大伟,汪晓静,徐春虎,等. 且深1井盐层尾管超高温高密度固井水泥浆技术[J]. 钻井液与完井液,2024,41(5):622-629.

    XU Dawei, WANG Xiaojing, XU Chunhu, et al. Extra-high temperature high density cement slurry for cementing liners through salt formation in well Qieshen-1[J]. Drilling Fluid & Completion Fluid, 2024, 41(5):622-629.
    [19]
    李晶辉, 赵文杰. 可再分散乳胶粉的研究进展[J]. 硅酸盐通报,2016,35(12):4038-4043.

    LI Jinghui, ZHAO Wenjie. Research development of dispersible latex powder[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12):4038-4043.
    [20]
    YE J J, WANG X C, LI X B, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11):1655-1663. doi: 10.1080/01932691.2018.1461639
    [21]
    WEI Y N, LIU Y X. Study of dispersion mechanisms of modified SiC powder: electrostatic repulsion and steric hindrance mechanism[J]. New Journal of Chemistry, 2019, 43(35):14036-14044. doi: 10.1039/C9NJ02131K
    [22]
    闫睿昶,徐明,虞海法,等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.

    YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88.
    [23]
    GALLARDO V, MORALES M E, RUIZ M A, et al. An experimental investigation of the stability of ethylcellulose latex: correlation between zeta potential and sedimentation[J]. European Journal of Pharmaceutical Sciences, 2005, 26(2):170-175. doi: 10.1016/j.ejps.2005.05.008
    [24]
    PEI Y B, ZHANG X Y, JIANG Y L, et al. Redispersibility of acrylate polymer powder and stability of its reconstituted latex[J]. Journal of Dispersion Science and Technology, 2011, 32(9):1279-1284. doi: 10.1080/01932691.2010.505799
    [25]
    田野,马春旭,赵军,等. 防漏堵漏低密度水泥浆技术[J]. 钻井液与完井液,2024,41(4):515-521.

    TIAN Ye, MA Chunxu, ZHAO Jun, et al. Study on a low density cement slurry capable of preventing and stopping mud losses and the use of the slurry[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):515-521.
    [26]
    PEI Y B, REN X L, XIE D L, et al. Stabilization mechanism of the reconstituted emulsion of polyacrylate redispersible powder[J]. Chemical Engineering Communications, 2015, 202(9):1245-1250. doi: 10.1080/00986445.2014.919450
    [27]
    CHEN Q, CHEN Z F, LI C D, et al. Effect of dispersants on dispersion of glassfiber suspensions[J]. Asian Journal of Chemistry, 2014, 26(16):5100-5104. doi: 10.14233/ajchem.2014.16339
    [28]
    WANG B M, JIANG R S, SONG W Z, et al. Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique[J]. Russian Journal of Physical Chemistry a, 2017, 91(8):1517-1526. doi: 10.1134/S0036024417080040
    [29]
    余宗学, 梁灵, 何毅, 等. 新型抗温抗酸含磺酸基咪唑啉缓蚀剂的合成及其性能[J]. 材料保护,2015,48(5):27-30,38.

    YU Zongxue, LIANG Ling, HE Yi, et al. Synthesis of a novel corrosion inhibitor with good endurance against high temperature and acid and evaluation of its inhibition performance for steel[J]. Materials Protection, 2015, 48(5):27-30,38.
    [30]
    刘自茹, 肖尧, 陈旭, 等. 盐穴储能库固井工艺[J]. 钻井液与完井液,2024,41(3):374-382. doi: 10.12358/j.issn.1001-5620.2024.03.013

    LIU Ziru, XIAO Yao, CHEN Xu, et al. Well cementing technology for salt cavern energy storage[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):374-382. doi: 10.12358/j.issn.1001-5620.2024.03.013
    [31]
    张新贵, 孔新民, 王美洁, 等. 固井水泥浆胶乳的合成及性能评价[J]. 长江大学学报(自科版),2016,13(23):49-53.

    ZHANG Xingui, KONG Xinmin, WANG Meijie, et al. Synthesis and performance evaluation for latex for cement slurry[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(23):49-53.
    [32]
    李立昌,曹洪昌,高阳,等. 华北储气库韧性水泥浆及增韧机理[J]. 钻井液与完井液,2025,42(2):239-246.

    LI Lichang, CAO Hongchang, GAO Yang, et al. The toughening mechanisms of tough cement slurries for the underground gas storage in north China[J]. Drilling Fluid & Completion Fluid, 2025, 42(2):239-246.
    [33]
    冯瑞阁,李玮,孟仁洲,等. 星探1井韧性防窜水泥浆技术[J]. 钻井液与完井液,2023,40(5):658-664.

    FENG Ruige, LI Wei, MENG Renzhou, et al. Study and application of a tough anti-channeling cement slurry for well Xingtan-1[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):658-664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return