Volume 42 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
ZHANG Geng, LI Wentuo, HUANG Honglin, et al.A thermodynamic model for predicting 3D phase equilibrium surface of natural gas hydrates considering salt concentration[J]. Drilling Fluid & Completion Fluid,2025, 42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010
Citation: ZHANG Geng, LI Wentuo, HUANG Honglin, et al.A thermodynamic model for predicting 3D phase equilibrium surface of natural gas hydrates considering salt concentration[J]. Drilling Fluid & Completion Fluid,2025, 42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010

A Thermodynamic Model for Predicting 3D Phase Equilibrium Surface of Natural Gas Hydrates Considering Salt Concentration

doi: 10.12358/j.issn.1001-5620.2025.01.010
  • Received Date: 2024-09-02
  • Rev Recd Date: 2024-10-30
  • Publish Date: 2025-02-01
  • Accurate prediction of the thermodynamic stability of gas hydrates in salt-bearing systems is of great significance for predicting the accumulation range and determining the decomposition domain of hydrate. Therefore, considering the non-spherical characteristics of hydrate crystal cavity and the electrolyte interaction in the salt-containing system, a thermodynamic model of gas hydrate phase equilibrium considering salt concentration was established, and compared with the experimental data. The results show that the established three-dimensional phase equilibrium surface can effectively predict the thermodynamic stability of NGH, and the absolute mean relative deviation of temperature is only 0.08 in pure water, and no more than 0.15 in salt. When the molar fraction of chloride is greater than 0.02 and the pressure is higher than 20 MPa, the chemical factors cause the p-T curve to shift. When the pressure is small, the equilibrium temperature changes dramatically along the gradient of salt concentration, and the p-T curve no longer has translation characteristics. At the same time, AlCl3 has stronger inhibitory effect on CH4 hydrate than other chlorine salts when the molar fraction is the same. The lnp-X-1/T three-dimensional surface of CH4 hydrate exhibits better Clausius-Clapeyron linear behavior locally, and the surface as a whole has certain nonlinear characteristics. Moreover, the better the inhibition effect of chloride electrolyte on CH4 hydrate, the stronger the nonlinear characteristics.

     

  • loading
  • [1]
    刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质,2021,41(5):44-57.

    LIU Changling, SUN Yunbao. Characteristics of Marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5):44-57.
    [2]
    庞雄奇, 胡涛, 蒲庭玉, 等. 中国南海天然气水合物资源产业化发展面临的风险与挑战[J]. 石油学报,2024,45(7):1044-1060. doi: 10.7623/syxb202407002

    PANG Xiongqi, HU Tao, PU Tingyu, et al. Risks and challenges of the industrial development of methane hydrate resources in the South China Sea[J]. Acta Petrolei Sinica, 2024, 45(7):1044-1060. doi: 10.7623/syxb202407002
    [3]
    于倩男, 唐慧敏, 李承龙, 等. 天然气水合物注热分解渗流特征及数值模拟[J]. 东北石油大学学报,2023,47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004

    YU Qiannan, TANG Huimin, LI Chenglong, et al. Numerical simulation of seepage flow and decomposition characteristics of natural gas hydrate in process of heat injection production[J]. Journal of Northeast Petroleum University, 2023, 47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004
    [4]
    邵亚洲. 多孔介质中天然气水合物降压分解实验与数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.

    SHAO Yazhou. Experimental and numerical research ondissociation characteristics of natural gashydrate by depressurization in porous media[D]. Harbin: Harbin Engineering University, 2022.
    [5]
    陈兵兵. 多孔介质内水合物相变与流体运移相互作用机制研究[D]. 大连: 大连理工大学, 2021.

    CHEN Bingbing. Study on interaction mechanism between fluid migration and hydrate phase transition in porous media[D]. Dalian: Dalian University of Technology, 2021.
    [6]
    王俊杰, 蒋彬, 廖玉宏, 等. 南海琼东南盆地两种不同成因天然气水合物赋存的深层沉积物地球化学特征对比[J]. 地球化学,2023,52(2):180-190.

    WANG Junjie, JIANG Bin, LIAO Yuhong, et al. Comparison of geochemical characteristics of natural gas hydrate-related sediments in Qiongdongnan Basin, South China Sea[J]. Geochimica, 2023, 52(2):180-190.
    [7]
    李明川, 樊栓狮, 徐赋海, 等. 天然气水合物热分解Stefan相变数学模拟研究[J]. 化工学报,2021,72(6):3252-3260.

    LI Mingchuan, FAN Shuanshi, XU Fuhai, et al. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate[J]. CIESC Journal, 2021, 72(6):3252-3260.
    [8]
    吴艳辉, 代锐, 张磊, 等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001

    WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001
    [9]
    任冠龙, 孟文波, 何玉发, 等. 深水浅层钻井液水合物抑制性能优化[J]. 钻井液与完井液,2022,39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001

    REN Guanlong, MENG Wenbo, HE Yufa, et al. Optimization of hydrate inhibition performance of deep water shallow drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001
    [10]
    张更. 海洋浅表层天然气水合物固态流化开采井筒多相流动规律研究[D]. 北京: 中国石油大学(北京), 2023.

    ZHANG Geng. Research on the wellbore multiphase flow rules during natural gas hydrate solid fluidization exploitation in offshore shallow surface[D]. Beijing: China University of Petroleum(Beijing), 2023.
    [11]
    JAVANMARDI J, MOSHFEGHIAN M, MADDOX N R. An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol[J]. The Canadian Journal of Chemical Engineering, 2001, 79(3):367-373. doi: 10.1002/cjce.5450790309
    [12]
    MOHAMMADI H A, ANDERSON R, TOHIDI B. Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling[J]. AIChE Journal, 2005, 51(10):2825-2833. doi: 10.1002/aic.10526
    [13]
    MOHAMMADI A H, TOHIDI B. Prediction of hydrate phase equilibria in aqueous solutions of salt and organic inhibitor using a combined equation of state and activity coefficient‐based model[J]. The Canadian Journal of Chemical Engineering, 2005, 83(5):865-871.
    [14]
    BANDYOPADHYAY A A, KLAUDA J B. Gas hydrate structure and pressure predictions based on an updated Fugacity-Based model with the PSRK equation of state[J]. Industrial & Engineering Chemistry Research, 2011, 50(1):148-157.
    [15]
    HAGHIGHI H, CHAPOY A, TOHIDI B. Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the Cubic-Plus-Association equation of state[J]. Oil & Gas Science and Technology, 2009, 64(2):141-154.
    [16]
    HSIEH M K, YEH Y T, CHEN Y P, et al. Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes[J]. Industrial & Engineering Chemistry Research Journal, 2012, 51(5):2456-2469.
    [17]
    MA Q L, CHEN G J, GUO T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2):291-302. doi: 10.1016/S0378-3812(02)00295-9
    [18]
    LI S G, LI Y J, WANG J Q, et al. Prediction of gas hydrate formation conditions in the presence of electrolytes using an N-NRTL-NRF activity coefficient model[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):6269-6278.
    [19]
    Parrish W, PARRISH J. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Research, 1972, 11(1):26-35.
    [20]
    JOHN V T, PAPADOPOULOS K D, HOLDER G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 2010, 31(2):252-259.
    [21]
    MCKOY V, SINANOĞLU O. Theory of dissociation pressures of some gas hydrates[J]. The Journal of Chemical Physics, 1963, 38(12):2946-2956. doi: 10.1063/1.1733625
    [22]
    MEHTA A P, SLOAN E D. Improved thermodynamic parameters for prediction of structure H hydrate equilibria[J]. AIChE Journal, 1996, 42(7):2036-2046. doi: 10.1002/aic.690420724
    [23]
    SAITO S, MARSHALL D R, KOBAYASHI R. Hydrates at high pressures: Part II. Application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen[J]. AIChE Journal, 1964, 10(5):734-740. doi: 10.1002/aic.690100530
    [24]
    HOLDER G D, CORBIN G, PAPADOPOULOS K D. Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3):282-286.
    [25]
    NASRIFAR K, MOSHFEGHIAN M. A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol[J]. The Journal of Chemical Thermodynamics, 2001, 33(9):999-1014. doi: 10.1006/jcht.2000.0811
    [26]
    HSIEH C M, SANDLER S I, LIN S T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1):90-97. doi: 10.1016/j.fluid.2010.06.011
    [27]
    HAGHTALAB A, SHOJAEIAN A, MAZLOUMI S H. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions[J]. The Journal of Chemical Thermodynamics, 2011, 43(3):354-363. doi: 10.1016/j.jct.2010.10.004
    [28]
    BÖTTGER A, KAMPS Á P S, MAURER G. An experimental investigation of the phase equilibrium of the binary system (methane plus water) at low temperatures: solubility of methane in water and three-phase (vapour plus liquid plus hydrate) equilibrium[J]. Fluid Phase Equilibria, 2016, 407:209-216. doi: 10.1016/j.fluid.2015.03.041
    [29]
    MAEKAWA T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions[J]. Fluid Phase Equilibria, 2008, 267(1):1-5. doi: 10.1016/j.fluid.2008.02.006
    [30]
    孙始财, 刘昌岭, 业渝光, 等. 氯盐溶液中甲烷水合物高压分解条件及影响因素[J]. 物理化学学报,2011,27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773

    SUN Shicai, LIU Changling, YE Yuguang, et al. Dissociation conditions and influencing factors of methane hydrate in chloride salt solution under high pressure[J]. Acta Physico-Chimica Sinica, 2011, 27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(9)

    Article Metrics

    Article views (119) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return