Volume 41 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LIAO Yunhu, LIN Kexiong, JIA Hui, et al.Study on and application of a blocking removal system for reservoir damage by water invasion in low pressure gas wells[J]. Drilling Fluid & Completion Fluid,2024, 41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017
Citation: LIAO Yunhu, LIN Kexiong, JIA Hui, et al.Study on and application of a blocking removal system for reservoir damage by water invasion in low pressure gas wells[J]. Drilling Fluid & Completion Fluid,2024, 41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017

Study on and Application of a Blocking Removal System for Reservoir Damage by Water Invasion in Low Pressure Gas Wells

doi: 10.12358/j.issn.1001-5620.2024.06.017
  • Received Date: 2024-06-12
  • Accepted Date: 2024-06-12
  • Rev Recd Date: 2024-06-25
  • Publish Date: 2024-11-30
  • Low pressure gas wells drilled in the gas field D in South China Sea have experienced serious formation damage by water invasion. The formation damage by water invasion was studied through laboratory experiments such as drilled cuttings swelling, core damage by water sensitivity, water block, core flooding with water invasion, as well as three dimensional CT scanning etc. With these experiments, the degree of formation damage by water invasion is understood. To deal with the formation damage by water invasion, a blocking removal fluid suitable for disposal of formation damage by water invasion encountered in offshore low pressure gas wells was developed with a selected water invasion control agent, a new compounded organic acid HWCP, a corrosion inhibitor, a water blocking removal agent and a clay inhibitor. Laboratory studies show that condensate water causes more serious water sensitive damage to cores with low permeability, while the water blocking damage by the condensate water is weak to medium. Cores taken from the reservoirs are easy to damage by water invasion; when displacing at 0.5 MPa for 180 min, two pieces of cores, one saturated with formation water and another with condensate water, have water invasion damage of 59.76% and 69.67%, respectively. The blocking removal fluid has low surface tension, good swelling inhibitive capacity, good corrosion inhibitive capacity and strong ability to relieve formation damage by water invasion. A natural core injected with the water invasion control agent and the blocking removal fluid has permeability recovery of 100% or higher after displacing for 180 min. The blocking removal fluid has been used on the well A9hSa drilled in the gas field D in South China Sea, and water invasion damage was successfully removed, the gas production of this well was increased from 3.3 × 104 m3/d to more than 9.0 × 104 m3/d, a good result of using the blocking removal fluid.

     

  • loading
  • [1]
    毕晓明. 火山岩气藏驱动类型特征新认识[J]. 非常规油气,2021,8(3):10-16.

    BI Xiaoming. New understanding about characteristics of volcanic rock gas reservoir drive type[J]. Unconventional Oil & Gas, 2021, 8(3):10-16.
    [2]
    洪舒娜, 秦峰, 陈斯宇, 等. 海上生产气井动态产能评价新方法[J]. 非常规油气,2021,8(6):60-67.

    HONG Shuna, QIN Feng, CHEN Siyu, et al. A new method for dynamic productivity evaluation of offshore gas wells[J]. Unconventional Oil & Gas, 2021, 8(6):60-67.
    [3]
    池明, 马文敏, 郭玲, 等. XJ油田低压低产气井有效分类方法[J]. 昆明理工大学学报(自然科学版),2023,48(2):55-63.

    CHI Ming, MA Wenmin, GUO Ling, et al. An effective classification method for low-pressure and low-production gas wells in XJ oilfield[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2023, 48(2):55-63.
    [4]
    关闻. 基于SEC储量评估的气井措施评价模型与应用[J]. 非常规油气,2023,10(3):112-120.

    GUAN Wen. An evaluation method and practice of gas well measure benefit based on SEC evaluation rules[J]. Unconventional Oil & Gas, 2023, 10(3):112-120.
    [5]
    叶颉枭, 张华礼, 李松, 等. 川东石炭系低压气井解堵工艺研究与应用[J]. 石油与天然气化工,2021,50(3):71-74,84. doi: 10.3969/j.issn.1007-3426.2021.03.011

    YE Jiexiao, ZHANG Huali, LI Song, et al. Research and application of blockage removal technology for low-pressure gas well in eastern Sichuan Carboniferous formation[J]. Chemical Engineering of Oil and Gas, 2021, 50(3):71-74,84. doi: 10.3969/j.issn.1007-3426.2021.03.011
    [6]
    包凯. 页岩气井变流压-变产量递减模型及应用[J]. 非常规油气,2022,9(6):81-86.

    BAO Kai. Variable pressure-variable production decline model and its application in shale gas wells[J]. Unconventional Oil & Gas, 2022, 9(6):81-86.
    [7]
    吕毓刚, 潘海燕, 邬国栋, 等. 强水敏低渗油藏酸化防膨研究及现场应用[J]. 石油与天然气化工,2018,47(3):76-79. doi: 10.3969/j.issn.1007-3426.2018.03.016

    LYU Yugang, PAN Haiyan, WU Guodong, et al. Study and application of acidification anti-swelling for low permeability reservoir with strong water sensitivity[J]. Chemical Engineering of Oil and Gas, 2018, 47(3):76-79. doi: 10.3969/j.issn.1007-3426.2018.03.016
    [8]
    孙林, 杨军伟, 周伟强, 等. 一种适合海上砂岩油田的单段塞活性酸体系[J]. 钻井液与完井液,2016,33(1):97-101.

    SUN Lin, YANG Junwei, ZHOU Weiqiang, et al. Acidizing offshore sandstone reservoir with a single slug active acid system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):97-101.
    [9]
    马勇新, 张立权, 杨仲涵, 等. 浅层疏松砂岩气层损害评价方法研究及应用[J]. 钻井液与完井液,2021,38(1):68-73. doi: 10.3969/j.issn.1001-5620.2021.01.011

    MA Yongxin, ZHANG Liquan, YANG Zhonghan, et al. Study and application of the method for evaluating damage to shallow unconsolidated sandstone gas formations[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):68-73. doi: 10.3969/j.issn.1001-5620.2021.01.011
    [10]
    李善建, 何浩轩, 王泽坤, 等. 气井井筒堵塞原因分析及解堵工艺研究进展[J]. 西安石油大学学报(自然科学版),2024,39(1):56-65.

    LI Shanjian, HE Haoxuan, WANG Zekun, et al. Analysis of reasons for wellbore blockage in gas wells and research progress in blockage removal technology[J]. Journal of Xi'an Shiyou University(Natural Science), 2024, 39(1):56-65.
    [11]
    邢希金, 刘书杰, 黄晶. K30井堵塞原因分析及解堵措施[J]. 承德石油高等专科学校学报,2015,17(6):23-27. doi: 10.3969/j.issn.1008-9446.2015.06.006

    XING Xijin, LIU Shujie, HUANG Jing. Plug reason analysis and removal treatment research of well K30[J]. Journal of Chengde Petroleum College, 2015, 17(6):23-27. doi: 10.3969/j.issn.1008-9446.2015.06.006
    [12]
    许伟星, 陈平, 汪小宇. 长庆低压气井低伤害修井液研发[J]. 石油化工应用,2022,41(4):72-75. doi: 10.3969/j.issn.1673-5285.2022.04.017

    XU Weixing, CHEN Ping, WANG Xiaoyu. Research of low damage workover fluid in Changqing low-pressure gas wells[J]. Petrochemical Industry Application, 2022, 41(4):72-75. doi: 10.3969/j.issn.1673-5285.2022.04.017
    [13]
    刘历历, 解英明, 李育展, 等. 低压气井修井注气吞吐复产气液两相渗流规律[J]. 新疆石油天然气,2023,19(2):75-81. doi: 10.12388/j.issn.1673-2677.2023.02.010

    LIU Lili, XIE Yingming, LI Yuzhan, et al. The law of Gas-Liquid Two-Phase seepage for workover gas injection huff and puff production recovery in Low-Pressure gas wells[J]. Xinjiang Oil & Gas, 2023, 19(2):75-81. doi: 10.12388/j.issn.1673-2677.2023.02.010
    [14]
    吴婷婷, 朱华, 李隆新, 等. 超深层多断裂碳酸盐岩气藏水侵模式及治水对策[J]. 天然气勘探与开发,2023,46(3):49-58. doi: 10.12055/gaskk.issn.1673-3177.2023.03.006

    WU Tingting, ZHU Hua, LI Longxin, et al. Water-invasion patterns and ways to deal with water in ultra-deep carbonate gas reservoirs with multiple fractures[J]. Natural Gas Exploration and Development, 2023, 46(3):49-58. doi: 10.12055/gaskk.issn.1673-3177.2023.03.006
    [15]
    谭晓华, 李胜胜, 李晓平, 等. ZB气田Xu-2气藏水侵方向研究新方法[J]. 科学技术与工程,2019,19(20):165-173. doi: 10.3969/j.issn.1671-1815.2019.20.024

    TAN Xiaohua, LI Shengsheng, LI Xiaoping, et al. A new method for studying water invasion direction in Xu-2 gas reservoir of ZB gas field[J]. Science Technology and Engineering, 2019, 19(20):165-173. doi: 10.3969/j.issn.1671-1815.2019.20.024
    [16]
    刘爱华, 韩玉坤, 梁红娇, 等. 普光气田气井水侵特征识别及出水模式探讨[J]. 特种油气藏,2015,22(3):125-127. doi: 10.3969/j.issn.1006-6535.2015.03.032

    LIU Aihua, HAN Yukun, LIANG Hongjiao, et al. Water invasion identification and water production mode in gas well in Puguang gas field[J]. Special Oil & Gas Reservoirs, 2015, 22(3):125-127. doi: 10.3969/j.issn.1006-6535.2015.03.032
    [17]
    吴绍伟, 周泓宇, 林科雄, 等. 海上油田微粒运移堵塞井解堵控砂一体化工作液体系[J]. 钻井液与完井液,2021,38(3):391-396.

    WU Shaowei, ZHOU Hongyu, LIN Kexiong, et al. An integrated working fluid for blocking removal and sand control in offshore wells blocked by particle migration[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):391-396.
    [18]
    赵志强,罗健生. 热释放解堵剂 ThermAcid 的室内研究[J]. 钻井液与完井液,2023,40(1):134-138.

    ZHAO Zhiqiang, LUO Jiansheng. Laboratory study on the heat-release blockage removing agent thermacid[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):134-138.
    [19]
    王耀聪,常笃,张庆祝,等. 温度响应型油田解堵剂的研究与应用[J]. 钻井液与完井液,2023,40(1):134-138.

    WANG Yaocong, CHANG Du, ZHANG Qingzhu, et al. Study and application of temperature-responsive blockage removal agent in oilfield[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):134-138.
    [20]
    何立成,蓝强,黄维安,等. 有机缓释微乳酸高效解堵剂的制备及性能研究[J]. 钻井液与完井液,2022,39(2):259-264.

    HE Licheng, LAN Qiang, HUANG Wei’an, et al. Preparation and properties of slow-release organic acid micro-emulsion with high efficient plugging removal[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):259-264.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(11)

    Article Metrics

    Article views (163) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return