Volume 41 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
ZOU Yiwei, WANG Yixin, ZHU Sijia, et al.Preparation and performance evaluation of well cementing fluid loss additive by dispersion polymerization method[J]. Drilling Fluid & Completion Fluid,2024, 41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012
Citation: ZOU Yiwei, WANG Yixin, ZHU Sijia, et al.Preparation and performance evaluation of well cementing fluid loss additive by dispersion polymerization method[J]. Drilling Fluid & Completion Fluid,2024, 41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012

Preparation and Performance Evaluation of Well cementing Fluid Loss Additive by Dispersion Polymerization Method

doi: 10.12358/j.issn.1001-5620.2024.06.012
  • Received Date: 2024-07-11
  • Rev Recd Date: 2024-08-21
  • Publish Date: 2024-11-30
  • In view of the disadvantages of aqueous solution polymerization and inverse emulsion polymerization, herein we report for the first time preparation of a cementing fluid loss additive C-FL72L through dispersion polymerization, in which acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), fumaric acid (FA), N,N-dimethylacrylamide (DMA) are used as monomers, pentaerythritoltriallyl ether is used as crosslinker, and polyvinylpyrrolidone (PVP-K30) is used as stabilizer. The reaction kinetics of dispersed polymerization were investigated, and the conversion rate reached 98.9% after 4 hours of reaction. By means of infrared spectrum test, thermogravimetric analysis, high-performance liquid chromatography, gel permeation chromatography and other characterization methods, it is shown that all monomers are fully and completely polymerized, the temperature resistance of the fluid loss additive exceeds 300 ℃, and the molecular weight can reach 772,000. In the performance evaluation of cement slurry, fluid loss can be controlled within 40 mL at 150 ℃, and the engineering properties of cement slurry, such as rheological properties, thickening properties, and compressive strength, are excellent. The mechanism of the fluid loss additive is also discussed. The fluid loss additive C-FL72L has excellent application performance in functional cement slurry systems such as high-density, low-density, resin, latex, saline water, and has broad application prospects.

     

  • loading
  • [1]
    罗宇维, 肖伟, 赵军. “十三五”中国海油固井技术研究进展与发展建议[J]. 中国海上油气,2020,32(5):145-151.

    LUO Yuwei, XIAO Wei, ZHAO Jun. Research progresses and development suggestions of CNOOC cementing technology during the "13th Five-Year Plan"[J]. China Offshore Oil and Gas, 2020, 32(5):145-151.
    [2]
    罗宇维, 陈良, 罗东辉, 等. 深水高压井负压力窗口固井关键技术[J]. 中国海上油气,2016,28(4):83-87.

    LUO Yuwei, CHEN Liang, LUO Donghui, et al. Key technology for negative pressure-window cementing in high pressure deep water walls[J]. China Offshore Oil and Gas, 2016, 28(4):83-87.
    [3]
    喻文娟, 郭锦棠, 郭春, 等. 耐盐降失水剂AMPS/DMAA/IA的合成及其性能评价[J]. 化学工艺与工程,2018,35(1):45-50.

    YU Wenjuan, GUO Jintang, GUO Chun, et al. Synthesis and performance evaluation of Salt-Resistant fluid loss additive AMPS/DMAA/IA[J]. Chemical industry and engineer, 2018, 35(1):45-50.
    [4]
    韩亮, 唐欣, 杨远光, 等. 新型两性离子固井降失水剂的合成与性能评价[J]. 钻井液与完井液,2018,35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014

    HAN Liang, TANG Xin, YANG Yuanguang, et al. Synthesis and evaluation of a new amphoteric filter loss reducer for cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014
    [5]
    MAO H, QIU Z S, SHEN Z H, et al. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129:1-14. doi: 10.1016/j.petrol.2015.03.003
    [6]
    张健, 彭志刚, 邹长军, 等. 聚合物基纳米SiO2复合微球固井降失水剂的合成及表征[J]. 硅酸盐学报,2017,45(11):1649-1657.

    ZHANG Jian, PENG Zhigang, ZOU Changjun, et al. Synthesis and characterization of composite polymer microspheres based Nano-Silica for cementing fluid loss additive[J]. Journal of the Chinese Ceramic Society, 2017, 45(11):1649-1657.
    [7]
    CAO L, GUO J T, TIAN J H, et al. Synthesis, characterization and working mechanism of a novel sustained-release-type fluid loss additive for seawater cement slurry[J]. Journal of Colloid and Interface Science, 2018, 524:434-444. doi: 10.1016/j.jcis.2018.03.079
    [8]
    邹亦玮, 王义昕. 抗盐固井降失水剂的研究进展[J]. 辽宁化工,2022,51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033

    ZOU Yiwei, WANG Yixin. Research progress of salt resistant cementing fluid loss additive[J]. Liaoning Chemical Industry, 2022, 51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033
    [9]
    林鑫,刘硕琼,夏修建,等. 热引发聚合方法制备抗240 ℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011

    LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240 ℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011
    [10]
    XU Y, YU Y J, LIU M, et al. Synthesis and working mechanism of fluid loss additive by freeze-drying method[J]. Polymer-plastics technology and materials, 2020, 59(13):1417-1428. doi: 10.1080/25740881.2020.1744010
    [11]
    LI M, XIAO W Y, ZHANG H, et al. An effective salt-tolerant fluid loss additive-suitable for high temperature oil well cement[J]. Journal of Dispersion Science and Technology, 2021, 42(5):730-741. doi: 10.1080/01932691.2019.1709494
    [12]
    郭锦棠, 刘振兴, 何军, 等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.

    GUO Jintang, LIU Zhenxing, HE Jun, et al. Synthesis and properties of a new High-Temperature and Salt-Resistant fluid loss additive LX-1[J]. Journal of Tianjin University Science and Technology, 2021, 54(3):318-323.
    [13]
    李晓岚, 郑志军, 郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013

    LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013
    [14]
    李子轩. P (AMPS-DMAA-MEP)三元共聚降失水剂的制备及其性能研究[J]. 塑料工业,2020,48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034

    LI Zixuan. Preparation and properties of P(AMPS-DMAA-MEP) ternary copolymerization water loss reducing agent[J]. China Plastics Industry, 2020, 48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034
    [15]
    邹双, 熊钰丹, 张天意, 等. 盐膏层固井用降失水剂的研究与应用[J]. 钻井液与完井液,2021,38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017

    ZOU Shuang, XIONG Yudan, ZHANG Tianyi, et al. Study and application of fluid loss additive used in cement slurries for cementing salt-gypsum stratum[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017
    [16]
    李雨威, 黄志宇. 抗高温油井水泥降失水剂SZ1-1的研制与应用[J]. 钻采工艺,2018,41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27

    LI Yuwei, HUANG Zhiyu. Development and application of high temperature oil well cement filtrate reducer SZ1[J]. Drilling & Production Technology, 2018, 41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27
    [17]
    刘欢, 曾雪玲, 李文研, 等. 新型抗温耐盐聚合物降失水剂的制备及性能研究[J]. 现代化工,2023,43(1):226-233.

    LIU Huan, ZENG Xueling, LI Wenyan, et al. Preparation and properties of a novel temperature-and salt-resistant polymer fluid loss reducer[J]. Modern chemical industry, 2023, 43(1):226-233.
    [18]
    郭子涵, 李明, 杨燕, 等. 近年来油井水泥降失水剂研究现状概述[J]. 现代化工,2015,35(10):49-53.

    GUO Zihan, LI Ming, YANG Yan, et al. Current status of fluid loss reducers for oil well cement in recent years[J]. Modern chemical industry, 2015, 35(10):49-53.
    [19]
    胡昊, 高榕, 刘东兵. 分散聚合研究进展[J]. 石油化工,2021,50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012

    HU Hao, GAO Rong, LIU Dongbing. Progress in dispersion polymerization[J]. Petrochemical Technology, 2021, 50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012
    [20]
    WANG K, WANG Y X, ZHANG W Q. Synthesis of diblock copolymer nano-assemblies by Pisa under dispersion polymerization: comparison between ATRP and RAFT[J]. Polymer Chemistry, 2017, 8(41):6407-6415. doi: 10.1039/C7PY01618B
    [21]
    WANG Y X, HAN G, DUAN W F, et al. ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: a Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization[J]. Macromolecular Rapid Communications, 2019, 40(2):e1800140. doi: 10.1002/marc.201800140
    [22]
    于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358.

    YU Yongjin, ZHANG Hang, XIA Xiujian, et a1. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):352-358
    [23]
    王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636.

    WANG Qike, LIU Wenming, LING Yong, et al. The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):629-636
    [24]
    夏修建,李鹏鹏,于永金,等. 侧链对油井水泥降失水剂性能的影响及机理研究[J]. 钻井液与完井液,2022,39(6):748-753.

    XIA Xiujian, LI Pengpeng, YU Yongjin, et al. Effects of polymer sidechains on performance of oil well cement filter loss reducers and studies on mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):748-753
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (150) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return