Citation: | XIE Tao, ZHANG Lei, DU Mingliang, et al.Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(6):728-735 doi: 10.12358/j.issn.1001-5620.2024.06.004 |
[1] |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005
|
[2] |
苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.
SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542.
|
[3] |
何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.
HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172.
|
[4] |
蒋官澄, 董腾飞, 崔凯潇, 等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577-585. doi: 10.11698/PED.20210666
JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3):577-585. doi: 10.11698/PED.20210666
|
[5] |
孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.
SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89.
|
[6] |
黄志洋, 赵雄虎, 苗留洁, 等. 智能流体研究进展及其在钻井液中的应用与展望[J]. 石油钻采工艺,2022,44(3):283-290.
HUANG Zhiyang, ZHAO Xionghu, MIAO Liujie, et al. Research progress of intelligent fluid and its application to drilling fluids[J]. Oil Drilling & Production Technology, 2022, 44(3):283-290.
|
[7] |
BERN P A, ZAMORA M, SLATER K S, et al. The influence of drilling variables on barite sag[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. Denver, Colorado, 1996: SPE-36670-MS.
|
[8] |
倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.
NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138.
|
[9] |
史赫, 史海民, 倪晓骁, 等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14.
SHI He, SHI Haimin, NI Xiaoxiao, et al. Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):8-14.
|
[10] |
王星媛, 吴敬恒, 石朝敏. 加重剂对超高温高密度油基钻完井液性能影响研究[J]. 钻采工艺,2021,44(2):81-85.
WANG Xingyuan, WU Jingheng, SHI Chaomin. Study on the effect of weighting agent on the performance of ultra-high temperature and high-density oil-based drilling and completion fluid[J]. Drilling & Production Technology, 2021, 44(2):81-85.
|
[11] |
HE Y B, DU M L, HE J, et al. An amphiphilic multiblock polymer as a High-Temperature gelling agent for Oil-Based drilling fluids and its mechanism of action[J]. GELS, 2023, 9(12):966. doi: 10.3390/gels9120966
|
[12] |
蒋官澄, 史赫, 贺垠博. 生物柴油基恒流变钻井液体系[J]. 石油勘探与开发,2022,49(1):173-182.
JIANG Guancheng, SHI He, HE Yinbo. The biodiesel-based flat-rheology drilling fluid system[J]. Petroleum Exploration and Development, 2022, 49(1):173-182.
|
[13] |
孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718.
SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718.
|
[14] |
黄宁, 吕开河, 孙金声, 等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001
HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001
|
[15] |
HE Y B, JIANG G C, DENG Z Q, et al. Polyhydroxy Gemini surfactant as a mechano-responsive rheology modifier for inverted emulsion drilling fluid[J]. RSC Advances, 2018, 8(1):342-353. doi: 10.1039/C7RA11300E
|
[16] |
赵景原, 窦旭斌, 冯福平, 等. 有机层状硅酸盐改善油基钻井液沉降稳定性室内评价[J]. 当代化工,2024,53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030
ZHAO Jingyuan, DOU Xubin, FENG Fuping, et al. Laboratory evaluation of organophilic phyllosilicate for improving sag stability of oil-based drilling fluid[J]. Contemporary Chemical Industry, 2024, 53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030
|
[17] |
ZHUANG G Z, ZHANG Z P, PENG S M, et al. Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite[J]. Applied Clay Science, 2018, 161:505-512. doi: 10.1016/j.clay.2018.05.018
|
[18] |
董晓强, 李雄, 方俊伟, 等. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-630.
DONG Xiaoqiang, LI Xiong, FANG Junwei, et al. Laboratory study on static sedimentation stability of high-density drilling fluids at high temperatures[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-630.
|
[19] |
李家学, 蒋绍宾, 晏智航, 等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液,2019,36(5):575-580.
LI Jiaxue, JIANG Shaobin, YAN Zhihang, et al. Study on the methods of evaluating static sedimentation stability of drill-in fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):575-580.
|