YOU Lijun, ZOU Jun, KANG Yili, et al.Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid,2024, 41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003
Citation: YOU Lijun, ZOU Jun, KANG Yili, et al.Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid,2024, 41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003

Mechanisms of Formation Damage by Lost Drilling Fluids in Fractured Tight Metamorphic Rock Gas Reservoirs

doi: 10.12358/j.issn.1001-5620.2024.06.003
  • Received Date: 2024-07-19
  • Rev Recd Date: 2024-08-25
  • Publish Date: 2024-11-30
  • When drilling into a naturally fractured tight reservoir, mud losses into the fractures can easily induce reservoir damage, block the pore throats and fractures in the reservoir formation, thereby reducing the permeability of the reservoir and hindering the stable production of oil and gas. In this study, the buried hill fractured tight metamorphic rock reservoir in a block in the Bohai Bay Basin was taken as the object of study, experiments such as fluid sensitivity, dynamic damage by drilling fluid and pressure bearing capacity of mud cakes were conducted. With these experiments, the degree of drilling fluid dynamic damage to the reservoir and the pressure bearing capacity of mud cakes were understood and the mechanisms of reservoir damage by fluid sensitivity were analyzed. The study results show that the matrices of the reservoir rocks have strong salt sensitivity, moderate to weak alkali sensitivity and weak water sensitivity. The incompatibility between the drilled solids particle sizes and the opening widths of the fractures in the reservoir causes the solids particles to invade into the deep fractures, plugging them and damaging the permeability of reservoir rocks. The drilling fluid used has good ability to plug fractures with opening widths ≤ 150 μm, but is unable to effectively plug fractures with opening widths ≥ 300 μm. The fractured tight metamorphic rock reservoir contains plenty of clay minerals and heavy minerals, mud losses cause the clay minerals to become hydrated and swollen, and migration of particles takes place, reacting with the heavy minerals to produce iron hydroxide precipitates which in turn exacerbate reservoir damage. When drilling metamorphic rock reservoirs, the protection of fractures with opening widths greater than 300 μm should be strengthened, and special attention paid to the reservoir damage induced by the interaction between the metamorphic rocks and the work fluids. Also presented in this paper are the measures to be taken in protecting reservoirs from being damaged.

     

  • [1]
    徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-38.

    XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):25-38.
    [2]
    操应长, 孙沛沛, 周立宏, 等. 渤海湾盆地二叠系碎屑岩储集层发育演化特征与勘探方向[J]. 石油勘探与开发,2023,50(5):937-949.

    CAO Yingchang, SUN Peipei, ZHOU Lihong, et al. Evolution characteristics and exploration targets of Permian clastic rock reservoirs in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2023, 50(5):937-949.
    [3]
    刘文超, 汪跃, 廖新武, 等. 渤海西南部海域变质岩潜山优质储层发育规律及成因机理[J]. 海洋地质前沿,2022,38(12):47-55.

    LIU Wenchao, WANG Yue, LIAO Xinwu, et al. Formation and origination of dominant reservoir in metamorphic buried hills in the southwestern Bohai Sea[J]. Marine Geology Frontiers, 2022, 38(12):47-55.
    [4]
    朱金智, 徐同台, 吴晓花, 等. 加重剂对抗高温超高密度柴油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(2):160-164.

    ZHU Jinzhi, XU Tongtai, WU Xiaohua, et al. The effects of weight materials on the performance of high temperature ultra-high-density diesel oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):160-164.
    [5]
    李文哲, 于兴川, 赖燕, 等. 深层脆性页岩井钻完井液漏失机理及主控因素[J]. 特种油气藏,2022,29(3):162-169.

    LI Wenzhe, YU Xingchuan, LAI Yan, et al. Lost circulation mechanism and main controlling factors in deep brittle shale wells[J]. Special Oil and Gas Reservoirs, 2022, 29(3):162-169.
    [6]
    康毅力, 赖哲涵, 陈明君, 等. 基于压力衰减法的页岩气体扩散系数应力敏感性实验[J]. 天然气工业,2022,42(2):59-70.

    KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Stress sensitivity experiments of shale gas diffusion coefficients based on the pressure decay method[J]. Natural Gas Industry, 2022, 42(2):59-70.
    [7]
    杨玉贵, 康毅力, 游利军, 等. 孔隙型与裂缝型储层水平井损害实验研究[J]. 西南石油大学学报,2007,29(S2):61-64,173.

    YANG Yugui, KANG Yili, YOU Lijun, et al. Comparative experiments of formation damage of horizontal wells in pore and fractured Reservoirs[J]. Journal of Southwest Petroleum University, 2007, 29(S2):61-64,173.
    [8]
    KOSYNKIN D V, CERIOTTI G, WILSON K C, et al. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids[J]. ACS Applied Materials & Interfaces, 2012, 4(1):222-227.
    [9]
    谭伟雄, 白瑞婷, 邹俊, 等. 渤中某区块太古界潜山裂缝性变质岩储层钻井液损害分析[J]. 断块油气田,2023,30(5):715-720.

    TAN Weixiong, BAI Ruiting, ZOU Jun, et al. Drilling fluid damage analysis of fractured metamorphic rock reservoirs in Archaean buried hills in a block of Bozhong[J]. Fault-Block Oil and Gas Field, 2023, 30(5):715-720.
    [10]
    王巧智, 苏延辉, 江安, 等. 可控冲击波增渗解堵技术实验研究[J]. 天然气与石油,2021,39(2):68-74.

    WANG Qiaozhi, SU Yanhui, JIANG An, et al. Experimental research on the technology of permeability enhancement and plug removal by controllable shockwave[J]. Natural Gas and Oil, 2021, 39(2):68-74.
    [11]
    VIEIRA P, ARNONE M, RUSSEL B, et al. Constant bottomhole pressure: Managed-pressure drilling technique applied in an exploratory well in Saudi Arabia[C]//SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. Abu Dhabi, UAE, 2008: SPE-113679-MS.
    [12]
    FAROOQ H A, KANDASAMI R K, SORRENTINO G, et al. Rupture resistance of filter cake under static filtration using a novel experimental technique[J]. Chemical Engineering Science, 2023, 270:118508. doi: 10.1016/j.ces.2023.118508
    [13]
    胡晨光, 潘勇利, 周鑫宇, 等. 临河坳陷变质岩潜山储层形成控制因素及特征[J]. 西安石油大学学报(自然科学版),2023,38(4):20-29.

    HU Chenguang, PAN Yongli, ZHOU Xinyu, et al. Reservoir characteristics and control factors of metamorphic buried hill in Linhe depression[J]. Journal of Xi'an Shiyou University(Natural Science), 2023, 38(4):20-29.
    [14]
    张路锋, 周福建, 辜富洋, 等. 裂缝性致密砂岩气藏入井流体伤害规律[J]. 钻井液与完井液,2018,35(5):121-126.

    ZHANG Lufeng, ZHOU Fujian, GU Fuyang, et al. Regularities of fractured tight sandstone gas reservoirs damaged by work fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):121-126.
    [15]
    张宇飞,王超群,徐博韬,等. 渤中凹陷裂缝性致密储层钻开液伤害研究[J]. 钻井液与完井液,2024,41(3):325-329.

    ZHANG Yufei, WANG Chaoqun, XU Botao, et al. Study on damage by drilling fluid of fractured tighten reservoirs in Bozhong sag[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):325-329
    [16]
    张伙兰, 谢金有, 刘亿, 等. 莺歌海盆地XF区黄流组砂岩储集性能差异的控制因素及其地质意义[J]. 天然气工业,2014,34(5):43-48.

    ZHANG Huolan, XIE Jinyou, LIU Yi, et al. Controlling factors of storage capacity differences of Huangliu Fm sandstone in XF area of the Yinggehai Basin and their geologic significance[J]. Natural Gas Industry, 2014, 34(5):43-48.
    [17]
    RAZUM I, RUBINIĆ V, MIKO S, et al. Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation[J]. Catena, 2023, 226:107083. doi: 10.1016/j.catena.2023.107083
    [18]
    PRATAMA M A, KHAN H J, DAIGLE H. A review of formation damage processes encountered during gas hydrate production[J]. Geoenergy Science and Engineering, 2023, 228:211958. doi: 10.1016/j.geoen.2023.211958
    [19]
    何瑞兵,谭伟雄,白瑞婷,等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液,2024,41(2):155-165.

    HE Ruibing, TAN Weixiong, BAI Ruiting, et al. Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):155-165
    [20]
    廖高龙,梁豪,马双政,等. 深水钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336.

    LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al. Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):330-336
    [21]
    KALHOR Mohammadi M, RIAHI S, BOEK E S. An insight review on formation damage induced by drilling fluids[J]. Reviews in Chemical Engineering, 2023, 39(3):387-415. doi: 10.1515/revce-2020-0106
    [22]
    张栋梁, 饶利平, 蔡绪森, 等. 长庆油田低渗储层微粒运移堵塞损害机理[J]. 断块油气田,2023,30(3):441-447.

    ZHANG Dongliang, RAO Liping, CAI Xusen, et al. The mechanism of particle migration and plugging in low-permeability reservoir of Changqing Oilfield[J]. Fault-Block Oil and Gas Field, 2023, 30(3):441-447.
  • Relative Articles

    [1]ZHANG Dujie, JIN Junbin, LI Daqi, ZHANG Dong, JIN Zhongliang. The Experimental Methods to Evaluate the Fluids Sensitivity Damage of Ultra-deep and Ultra-tight Gas Reservoirs[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(2): 172-177. doi: 10.12358/j.issn.1001-5620.2024.02.005
    [2]ZHANG Yufei, WANG Chaoqun, XU Botao, MIAO Hailong, LUO Cheng, SU Junlin. Study on Damage by Drilling Fluid of Fractured Tighten Reservoirs in Bozhong Sag[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(3): 325-329. doi: 10.12358/j.issn.1001-5620.2024.03.006
    [3]LIAO Gaolong, LIANG Hao, MA Shuangzheng, ZHANG Yaoyuan, SHEN Yuan, NAN Yuan, WANG Guanxiang, HE Yinbo. Prediction of Gas Well Productivity Based on Attribution Analysis of Controllable Factors of HEM Water-Based Drilling Fluid to Gas Reservoir Damage[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(3): 330-336. doi: 10.12358/j.issn.1001-5620.2024.03.007
    [4]HE Ruibing, TAN Weixiong, BAI Ruiting, KANG Yili, LI Hongru, LI Xinlei, YOU Lijun. Formation Damage in High Temperature Dense Glutenite Reservoirs by Salt Sensitivity and Salt Precipitation[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(2): 155-165. doi: 10.12358/j.issn.1001-5620.2024.02.003
    [5]YANG Lili, WU Yunpeng, JIANG Guancheng, XIE Chunlin, ZHANG Yongwei. Lost Circulation Material and Technology Research of Self-healing Hydrogel[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(1): 47-53. doi: 10.12358/j.issn.1001-5620.2023.01.006
    [6]LI Ming, GUO Jianchun, LIU Yuxuan, LIU Wenhui. Experimental Study on Mud Intrusion in Tarim Tightly Fractured Reservoirs[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(5): 586-593. doi: 10.12358/j.issn.1001-5620.2023.05.006
    [7]SUN Lin, MENG Xiangli, WU Shenqu, WANG Qiaozhi, QU Qingdong. Reservoir Damage Diagnosis and Acidizing Extended Effect Technology of Massive Sewage Reinjection Wells with Thousands of Cubic Meters[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(1): 125-131. doi: 10.12358/j.issn.1001-5620.2023.01.017
    [8]HOU Xiaoyu, ZHOU Fujian, YAO Erdong, WANG Xiukun. Study on the Imbibition Law and Mechanism of Strong Emulsification System Based on the Experimental and Numerical Assessment[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(6): 815-826. doi: 10.12358/j.issn.1001-5620.2023.06.017
    [9]MA Lei, YUAN Xueqiang, ZHANG Wandong, CAO Feng, DENG Wenbiao, ZHANG Xuefei, YANG Lili. A Synthetic Based Drilling Fluid with Strong Plugging Capacity for Block Wushi17-2[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 558-564. doi: 10.12358/j.issn.1001-5620.2022.05.005
    [10]QI Shengjin, JIANG Jianfang, JIANG Jie, CHU Zhenyu, LIU Qiujun, FENG Zhangyu, TANG Shan, HUANG Dengzhu. Fracturing Fluid Damage Evaluation and Microscopic Damage Mechanism Study for Expansion Tight oil Test Area of Long 26[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(5): 648-656. doi: 10.12358/j.issn.1001-5620.2021.05.017
    [11]WANG Tongyou, ZHANG Wei. A Highly Resilient Borehole Wall Strengthening Plugging Agent[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 327-331. doi: 10.3969/j.issn.1001-5620.2020.03.010
    [12]LI Shaoli. Study and Application of an Ultra-Low-Density Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 644-650. doi: 10.3969/j.issn.1001-5620.2020.05.018
    [13]DANG Donghong, GUO Wenmeng, LI Lijun, LI Dong, SHEN Lei, MA Qianyun, CHEN Dacang. Normal Injection, Reverse Squeeze and Intermediate Diversion: A Technology for Cementing the Complex Well **1-H*[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 371-376. doi: 10.3969/j.issn.1001-5620.2020.03.018
    [14]YOU Lijun, CHEN Yang, KANG Yili, YAN Xiaopeng, WANG Yijun. Productivity Index Method for Experimental Evaluation of Working Fluid Damage in Low Permeability Gas Reservoir[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 620-625. doi: 10.3969/j.issn.1001-5620.2020.05.014
    [15]NIE Shuaishuai, ZHENG Lihui, MENG Shangzhi, WEI Panfeng, ZHANG He, SUN Hao. Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020
    [16]YUAN Zhongtao, YANG Mou, AI Zhengqing, WANG Yao, ZHANG Changduo, ZHANG Xin. Risk Evaluation of Cementing Job Quality of Wells Drilled in Kuche Piedmont Structure[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 89-94. doi: 10.3969/j.issn.1001-5620.2017.06.017
    [17]SONG Yousheng, ZOU Jianlong, ZHAO Baohui, LIU Aiping. Liner Cementing the high pressure gas wells in the Block Gaoshiti-Moxi[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(2): 111-116. doi: 10.3969/j.issn.1001-5620.2017.02.020
    [18]YOU Lijun, LIN Zilan, JIANG An, KANG Yili, CUI Kaixiao. Mechanisms and Evaluation of Coal Gas Bed Damage[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 1-8. doi: 10.3969/j.issn.1001-5620.2017.04.001
    [19]PENG Yu, ZHAO Jinzhou, LIN Xiao, LI Kewei. Progress in Shale Gas Reservoir Fracturing Study and its Enlightenment[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 8-13. doi: 10.3969/j.issn.1001-5620.2016.04.002
  • Cited by

    Periodical cited type(1)

    1. 兰宇. 钻井液漏失情况预测和监测技术进展研究. 内蒙古石油化工. 2025(02): 81-84 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 61.2 %META: 61.2 %PDF: 15.8 %PDF: 15.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %其他: 0.5 %其他: 0.5 %China: 0.8 %China: 0.8 %三亚: 0.3 %三亚: 0.3 %三门峡: 0.3 %三门峡: 0.3 %上海: 1.1 %上海: 1.1 %东营: 0.3 %东营: 0.3 %临汾: 0.3 %临汾: 0.3 %乐山: 0.3 %乐山: 0.3 %佛山: 0.5 %佛山: 0.5 %克拉玛依: 0.3 %克拉玛依: 0.3 %兰州: 1.6 %兰州: 1.6 %北京: 3.4 %北京: 3.4 %华盛顿州: 1.6 %华盛顿州: 1.6 %南京: 0.8 %南京: 0.8 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %大连: 0.5 %大连: 0.5 %天津: 4.5 %天津: 4.5 %广州: 2.1 %广州: 2.1 %延安: 0.8 %延安: 0.8 %张家口: 15.3 %张家口: 15.3 %成都: 2.9 %成都: 2.9 %扬州: 0.5 %扬州: 0.5 %昆明: 1.1 %昆明: 1.1 %杭州: 0.5 %杭州: 0.5 %武汉: 0.5 %武汉: 0.5 %海口: 0.3 %海口: 0.3 %海西: 0.3 %海西: 0.3 %焦作: 0.3 %焦作: 0.3 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 6.6 %芒廷维尤: 6.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.5 %苏州: 0.5 %西宁: 7.4 %西宁: 7.4 %西安: 1.6 %西安: 1.6 %诺沃克: 6.1 %诺沃克: 6.1 %谢利夫: 0.3 %谢利夫: 0.3 %贵阳: 1.1 %贵阳: 1.1 %辽阳: 0.3 %辽阳: 0.3 %运城: 2.1 %运城: 2.1 %连云港: 0.5 %连云港: 0.5 %遵义: 0.5 %遵义: 0.5 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %金华: 0.5 %金华: 0.5 %鞍山: 0.3 %鞍山: 0.3 %驻马店: 18.5 %驻马店: 18.5 %鹰潭: 0.3 %鹰潭: 0.3 %其他其他China三亚三门峡上海东营临汾乐山佛山克拉玛依兰州北京华盛顿州南京哈尔滨哥伦布大连天津广州延安张家口成都扬州昆明杭州武汉海口海西焦作盐城石家庄芒廷维尤芝加哥苏州西宁西安诺沃克谢利夫贵阳辽阳运城连云港遵义郑州重庆金华鞍山驻马店鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (230) PDF downloads(61) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return