Volume 41 Issue 5
Nov.  2024
Turn off MathJax
Article Contents
XU Dawei, WANG Xiaojing, XU Chunhu, et al.Extra-high temperature high density cement slurry for cementing liners through salt formation in well Qieshen-1[J]. Drilling Fluid & Completion Fluid,2024, 41(5):622-629 doi: 10.12358/j.issn.1001-5620.2024.05.009
Citation: XU Dawei, WANG Xiaojing, XU Chunhu, et al.Extra-high temperature high density cement slurry for cementing liners through salt formation in well Qieshen-1[J]. Drilling Fluid & Completion Fluid,2024, 41(5):622-629 doi: 10.12358/j.issn.1001-5620.2024.05.009

Extra-High Temperature High Density Cement Slurry for Cementing Liners through Salt Formation in Well Qieshen-1

doi: 10.12358/j.issn.1001-5620.2024.05.009
  • Received Date: 2024-03-11
  • Rev Recd Date: 2024-04-28
  • Publish Date: 2024-11-07
  • The well Qieshen-1 is an exploration well deployed by Sinopec in block Tazhong in Tarim Basin. The well was drilled to a depth of 8,745.00 m in four intervals, with static bottom hole temperature being 196 ℃. Technical difficulties such as high temperature, high pressure, salt formation, narrow clearance between the wall of the hole and the casing string as well as difficulties in displacing the whole-oil based drilling fluid were encountered in cementing the casing string in the fourth interval. To deal with these difficulties, studies were conducted on the strength decay of the set cement and the settling stability, rheology and thickening time of the cement slurry. A saltwater resistant high density (Max. density 2.3 g/cm3) cement slurry that is stable at 230 ℃ was developed as a result of the study. Using aluminum-rich materials in the cement slurry, the decay of the strength of the set cement is inhibited. The settling stability of the cement slurry is improved by selecting weighting materials of different particle sizes, and silica fume. Other additives, such as high temperature filter loss reducers, compounded retarders and polyether-carboxylic acid dispersants were used to adjust the properties of the cement slurry to the required levels. Laboratory experiments show that the API filtration rate of the cement slurry is 44 mL, the flow index n is greater than 0.7, the thickening time is linearly adjustable, the high temperature settling stability is 0.01 g/cm3, and the 1 d and 28 d compressive strengths of the set cement are 192. MPa and 27.1 MPa respectively, with no signs of strength decay observed. With the use of oil displacing weighted prepad fluid and the adoption of other well cementing techniques, the well Queshen-1 was successfully cemented.

     

  • loading
  • [1]
    张锦宏, 周爱照, 成海, 等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149-158. doi: 10.11911/syztjs.2023021

    ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec's petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4):149-158. doi: 10.11911/syztjs.2023021
    [2]
    严思明, 严圣东, 吴亚楠, 等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺,2018,40(2):174-178.

    YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2):174-178.
    [3]
    姚勇, 尹宗国, 焦建芳等. 官深1井超高密度水泥浆固井技术[J]. 石油钻探技术,2013,41(01):118-122. doi: 10.3969/j.issn.1001-0890.2013.01.023

    YAO Yong, YIN Zongguo, JIAO Jianfang, et al. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(01):118-122. doi: 10.3969/j.issn.1001-0890.2013.01.023
    [4]
    李韶利, 宋韶光. 松科2井超高温水泥浆固井技术[J]. 钻井液与完井液,2018,35(2):92-97. doi: 10.3969/j.issn.1001-5620.2018.02.015

    LI Shaoli, SONG Shaoguang. Cementing technology for ultra-high temperature well Songke-2[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):92-97. doi: 10.3969/j.issn.1001-5620.2018.02.015
    [5]
    姚晓, 葛莊, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23. doi: 10.11911/syztjs.2018008

    YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23. doi: 10.11911/syztjs.2018008
    [6]
    罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术,2019,47(4):17-21. doi: 10.11911/syztjs.2019094

    LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4):17-21. doi: 10.11911/syztjs.2019094
    [7]
    刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液,2019,36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014

    LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. DrillingFluid & Completion Fluid, 2019, 36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014
    [8]
    于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014

    YU Yongjin, ZHANG Hang, XIA Xiujian, et a1. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. DrillingFluid & Completion Fluid, 2022, 39(3):352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014
    [9]
    XIA X J, FENG Y K, GUO J T, et a1. Zwitterionic Copolymer for Controlling Fluid Loss in Oilwell Cementing: Preparation, Characterization, and Working Mechanism[J]. Polymer Engineering and Science, 57, 2017, 78-88.
    [10]
    于永金, 薛毓铖, 夏修建, 等. 一种抗240 ℃超高温固井缓凝剂的研发与评价[J]. 天然气工业,2023,43(3):107-112.

    YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research & development and evaluation of a cementing retarder resistant to 240 ℃ ultra-high temperature[J]. Natural Gas Industry, 2023, 43(3):107-112.
    [11]
    XIA X J, GUO J T, CHEN D, et al. Hydrophobic associated copolymer as a wide temperature range synthetic cement retarder and its effect on cement hydration[J]. Journal of Applied Polymer Science, 2017, 134(35):45242. doi: 10.1002/app.45242
    [12]
    TIAN H W, KONG X M, MIAO X, et al. A new insight into the working mechanism of PCE emphasizing the interaction between PCE and Ca2+ in fresh cement paste[J]. Construction and Building Materials, 2021, 275:122133. doi: 10.1016/j.conbuildmat.2020.122133
    [13]
    涂思琦, 谢飞燕, 敖康伟, 等. 一种适用于长宁页岩气井的高效洗油隔离液[J]. 钻井液与完井液,2022,39(1):82-86. doi: 10.12358/j.issn.1001-5620.2022.01.014

    TU Siqi, XIE Feiyan, AO Kangwei, et a1. A high efficiency oil wash spacer for shale gas wells in Changning oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):82-86. doi: 10.12358/j.issn.1001-5620.2022.01.014
    [14]
    李小林, 李剑华, 杨红滨, 等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013

    LI Xiaolin, LI Jianhua, YANG Hongbin, et a1. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (204) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return