ZHANG Fuming, XIAO Wei, ZHU Sijia, et al.An ultra-high temperature high density corrosion inhibitive anti-channeling cement slurry[J]. Drilling Fluid & Completion Fluid,2024, 41(4):506-514 doi: 10.12358/j.issn.1001-5620.2024.04.012
Citation: ZHANG Fuming, XIAO Wei, ZHU Sijia, et al.An ultra-high temperature high density corrosion inhibitive anti-channeling cement slurry[J]. Drilling Fluid & Completion Fluid,2024, 41(4):506-514 doi: 10.12358/j.issn.1001-5620.2024.04.012

An Ultra-High Temperature High Density Corrosion Inhibitive Anti-Channeling Cement Slurry

doi: 10.12358/j.issn.1001-5620.2024.04.012
  • Received Date: 2024-01-28
  • Rev Recd Date: 2024-03-07
  • Publish Date: 2024-09-30
  • The oilfield in the west of the South China Sea, in which high temperature high pressure gas reservoirs are drilled, is a main gas production area. In this oilfield the formation temperature of the target zone in the Ledong area is 210 ℃, the formation pressure coefficient 2.20-2.29 and the safe pressure window only 0.04-0.05. These formation characteristics together with the existence of CO2 in the same target zone make it difficult for the energy to be explored and developed. One of the key technologies for the gas development in this area is the development of a corrosion-resistant cement slurry for use in ultra-high temperature high pressure environment. To efficiently develop the gas resource, a cement slurry, having its densities ranging between 2.40 g/cm3 and 2.60 g/cm3 and with CO2 corrosion resistance is developed. In this cement slurry, a reduced iron powder, a manganese ore powder and a silica of different particle sizes are sized and used as the solid material, a low activity MgO as the lattice swelling agent to prevent shrinkage of the cement sheath, a special latex as the corrosion inhibitor and anti-channeling agent, and an organic and an inorganic intercalated polymers as the high temperature suspending stabilizer. Laboratory evaluation experiment shows that under CO2 partial pressure of 50%, aging pressure of 100 MPa and aging temperature of 180-220 ℃, the compressive strength of the set cement after being corroded for 180 d is three times of the compressive strength of the set cement before being corroded. At the same time, the permeability of the set cement is only slightly increased (<0.01 mD). The hydration products of the cement change from C6S6H, an xonotlite before corrosion of the set cement, to CaCO3 and SiO2 after corrosion. The set cement, after being aged at 220 ℃ for 24 h, has compressive strength of greater than 25 MPa, and SPN value of less than or equal to 0.5. The thickening time of the cement slurry is easy to adjust, the cement is easy to flow, and the difference between the density of the slurry at the bottom and that of the slurry at the top is less than 0.01. These properties of the cement satisfy the requirements of the field operation.

     

  • [1]
    李中, 刘书杰, 李炎军, 等. 南海高温高压钻完井关键技术及工程实践[J]. 中国海上油气,2017,29(6):100-107.

    LI Zhong, LIU Shujie, LI Yanjun, et al. Key technology and practice of HTHP well drilling and completion in South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6):100-107.
    [2]
    武治强, 岳家平, 谢仁军, 等. 南海超高温耐腐蚀防气窜固井水泥浆体系研究[J]. 石油化工应用,2021,40(9):47-51,69. doi: 10.3969/j.issn.1673-5285.2021.09.010

    WU Zhiqiang, YUE Jiaping, XIE Renjun, et al. Study on ultra high temperature anti corrosion cement slurry system in South China Sea[J]. Petrochemical Industry Application, 2021, 40(9):47-51,69. doi: 10.3969/j.issn.1673-5285.2021.09.010
    [3]
    杨红歧, 陈会年, 邓天安, 等. 元坝气田超深探井小尾管防气窜固井技术[J]. 石油钻采工艺,2020,42(5):592-599.

    YANG Hongqi, CHEN Huinian, DENG Tianan, et al. The anti-gas channeling small-linercementing technology for ultra deep exploration wells of Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2020, 42(5):592-599.
    [4]
    罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术,2019,47(4):17-21. doi: 10.11911/syztjs.2019094

    LUO Han, HE Shiming, LUO Deming. Ultra-high temperature and high pressure liner cementing technology in well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4):17-21. doi: 10.11911/syztjs.2019094
    [5]
    马疆, 苏洪生, 徐新纽, 等. 准噶尔盆地南缘深井、超深井超高温超高密度水泥浆体系研究及应用[J]. 新疆石油天然气,2021,17(3):18-24. doi: 10.3969/j.issn.1673-2677.2021.03.005

    MA Jiang, SU Hongsheng, XU Xinniu, et al. Study and application of ultra-high temperature and ultra-high density cement slurry system in deep and ultra-deep wells at southern margin of Junggar basin[J]. Xinjiang Oil & Gas, 2021, 17(3):18-24. doi: 10.3969/j.issn.1673-2677.2021.03.005
    [6]
    于永金, 夏修建, 王治国, 等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003

    YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and Ultra-Deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003
    [7]
    王敬朋, 熊友明, 路宗羽, 等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634-640.

    WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):634-640.
    [8]
    陈超, 王龙, 李鹏飞, 等. SN井区抗高温液硅-胶乳防气窜水泥浆[J]. 钻井液与完井液,2016,33(5):88-91.

    CHEN Chao, WANG Long, LI Pengfei, et al. HTHP anti-channeling liquid silica latex cement slurry used in block SN[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):88-91.
    [9]
    李斐, 路飞飞, 胡文庭. 超深超高温裂缝性气藏固井水泥浆技术[J]. 石油钻采工艺,2019,41(1):38-42.

    LI Fei, LU Feifei, HU Wenting. Cementing slurry technology for ultra-deep and ultra-high temperature fractured gas reservoir[J]. Oil Drilling & Production Technology, 2019, 41(1):38-42.
    [10]
    BARLET G V, CAMBUS C, DANICAN S, et al. Cement compositions for high temperature applications: US Patent 7459019[P]. 2023-02-14.
    [11]
    卢海川, 朱海金, 李宗要, 等. 水泥浆悬浮剂研究进展[J]. 油田化学,2014,31(2):307-311.

    LU Haichuan, ZHU Haijin, LI Zongyao, et al. Review on suspending agents for cement slurry[J]. Oilfield Chemistry, 2014, 31(2):307-311.
    [12]
    朱达江. 气井环空带压机理研究[D]. 成都: 西南石油大学, 2014.

    ZHU Dajiang. Research on mechanism of sustained casing pressure in gas wells[D]. Chengdu: Southwest Petroleum University, 2014.
    [13]
    陆沛青, 桑来玉, 谢少艾, 等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术,2019,47(1):52-58. doi: 10.11911/syztjs.2018141

    LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latexcement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1):52-58. doi: 10.11911/syztjs.2018141
    [14]
    孙刚, 曹丰泽, 廖易波, 等. 高温高压环境中 MgO 膨胀剂的性能与作用机理[J]. 硅酸盐学报,2021,49(8):1683-1690.

    SUN Gang, CAO Fengze, LIAO Yibo, et al. Behavior and expanding mechanism of MgO expansive agent at high temperature and high pressure[J]. Journal of the Chinese Ceramic Society, 2021, 49(8):1683-1690.
    [15]
    赵军, 徐璧华, 邱汇洋, 等. 抗高温防CO2和H2S腐蚀水泥浆体系研发与应用[J]. 中国海上油气,2017,29(3):91-94.

    ZHAO Jun, XU Bihua, QIU Huiyang, et al. Research and application of a heat-resisting and anti CO2 and H2S corrosion cement slurry[J]. China Offshore Oil and Gas, 2017, 29(3):91-94.
    [16]
    RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre[J]. ACS Nano, 2020, 14(8):9771-9779. doi: 10.1021/acsnano.0c01511
  • Relative Articles

    [1]FENG Ruige, LI Wei, MENG Renzhou, WANG Junjie. Study and Application of a Tough Anti-Channeling Cement Slurry for Well Xingtan-1[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(5): 658-664. doi: 10.12358/j.issn.1001-5620.2023.05.016
    [2]TIAN Jin. A High Temperature CO2 Resistant Hydroxyapatite Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 208-213. doi: 10.12358/j.issn.1001-5620.2022.02.013
    [3]JIAO Shaoqing, HE Long, GUO Xiaoyang, LI Zaoyuan, CHENG Xiaowei, LIU Wei, ZHU He. Successful Application of High Temperature Multi-Functional Gas Channeling Preventing Cement Slurry in Marine Ultra Deep Wells in Sichuan Basin[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(4): 512-520. doi: 10.3969/j.issn.1001-5620.2020.04.018
    [4]LI Xiaolin, WU Chaoming, ZHAO Shuxun, LIN Zhihui, WANG Guifu, LING Yong, WANG Lang. Technology for Cementing Shale Oil Reservoirs in Dagang Oilfield: Study and Application[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 232-238. doi: 10.3969/j.issn.1001-5620.2020.02.017
    [5]XIANG Chaogang, CHEN Junbin, WANG Long. Analyses of the Effects of CO2 on the Properties of High-Density Water Base Drilling Fluid and the Mechanisms of the Effects[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 26-30,35. doi: 10.3969/j.issn.1001-5620.2018.05.005
    [6]GU Guangwei, FENG Jingjing, LIU Rengguang, HOU Weihong, YANG Jinbo. Status Quo of Research on and Prospect of MgO as Oil Well Cement Expansion Agent[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 67-72. doi: 10.3969/j.issn.1001-5620.2017.06.013
    [7]LIU Zishuai, LI Yongjun, TANG Shouyong, WANG Dongming, JIANG Shiwei, ZHOU Chongfeng. Cementing High Temperature Deep Well Antan-1X with Narrow Annular Spaces[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 90-95. doi: 10.3969/j.issn.1001-5620.2017.04.017
    [8]QI Ben, FU Jiawen, SUN Qinliang, LIU Wenming, YU Qianqian, DU Bin. High Temperature Salt Resistant Nonionic Anti-channeling Styrene Butadiene Latex[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 79-83. doi: 10.3969/j.issn.1001-5620.2016.02.017
    [9]SONG Benling, ZHANG Naifu, ZHANG Weibin, WEI Jijun, LU Haichuan, SUN Xiaojie. Cement Slurry Used in Block Faja Venezuela[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 92-96. doi: 10.3969/j.issn.1001-5620.2016.04.019
    [10]GAO Yuan, SANG Laiyu, YANG Guangguo, CHANG Lianyu, WEI Haoguang. Cement Slurry Treated with Latex Nano Liquid Silica Anti-gas-migration Agent[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(3): 67-72. doi: 10.3969/j.issn.1001-5620.2016.03.014
    [11]LU Feifei, WANG Yonghong, LIU Yun, LI Fei, BAN Shengfu, ZHU Wenhao. Anti-channeling HTHP Liner Cementing Technologies Used in Block Shunnan[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 88-91,95. doi: 10.3969/j.issn.1001-5620.2016.02.019
    [12]CHEN Chao, WANG Long, LI Pengfei, YANG Zhongzu, WANG Weizhi. HTHP Anti-channeling Liquid Silica Latex Cement Slurry Used in Block SN[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(5): 88-91. doi: 10.3969/j.issn.1001-5620.2016.05.019
    [13]HOU Liwei. Low Density Low Temperature Anti-Channeling Cement Slurry Used in Daqing Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 79-82. doi: 10.3969/j.issn.1001-5620.2016.04.016
    [14]ZHANG Shunping, ZHANG Sen, QIN Yi, DING Zhiwei, JIN Jianzhou, XU Ming, YU Yongjin. Anti-channeling High Density Cement Slurry Technology for Horizontal Shale Gas Well in Weiyuan[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 63-67. doi: 10.3969/j.issn.1001-5620.2016.01.013
    [15]ZHANG Hua, WANG Daquan, HU Lin. Liner Cementing Technology for Well Moxi009-4-X2 in Block Anyue[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(3): 84-88. doi: 10.3969/j.issn.1001-5620.2016.03.017
    [16]ZHONG Fuhai, FEI Zhongming, GAO Fei, SUN Wanxing, QIN Yi, ZHENG Yanli. Anti-channeling High Density Cement Slurry Used in Cementing Well Hongbei-1[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 91-94. doi: 10.3969/j.issn.1001-5620.2016.06.016
    [17]ZHANG Yuping, YANG Yuanguang, SONG Yuanhong, YANG Haitao, HE Jianyong, HE Xingwei. Ultra High Temperature and Ultra High Density Cement Slurry withGas-channeling Inhibition[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(4): 51-54. doi: 10.3969/j.issn.1001-5620.2015.04.014
    [18]ZHANG Haishan, WANG Yongsong, GONG Jize, ZHAO Jun, ZHANG Jingtao. Study and Application of Toughness Enhanced and Anti-Channeling Cement Slurry Used in Offshore Well Cementing[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(4): 59-62. doi: 10.3969/j.issn.1001-5620.2015.04.016
  • Cited by

    Periodical cited type(2)

    1. 于志刚,袁辉,何长林,吕赟,张想,贾虎. 水性酚醛树脂改性水泥性能与作用机理. 断块油气田. 2025(01): 170-176 .
    2. 于天帅,代丹,邹亦玮,王义昕,王佳珺,妙孟姚. 油田高温高密度防CO_2腐蚀的加重剂研究. 山西化工. 2025(02): 131-134 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 64.9 %META: 64.9 %PDF: 13.6 %PDF: 13.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.7 %其他: 0.7 %三亚: 1.3 %三亚: 1.3 %上海: 0.7 %上海: 0.7 %东营: 0.3 %东营: 0.3 %临汾: 0.7 %临汾: 0.7 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.7 %保定: 0.7 %克拉玛依: 0.3 %克拉玛依: 0.3 %北京: 3.0 %北京: 3.0 %南京: 0.3 %南京: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 1.7 %天津: 1.7 %常德: 1.0 %常德: 1.0 %广州: 1.0 %广州: 1.0 %廊坊: 0.3 %廊坊: 0.3 %张家口: 14.9 %张家口: 14.9 %成都: 4.0 %成都: 4.0 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %昆明: 1.7 %昆明: 1.7 %武汉: 0.3 %武汉: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 0.7 %石家庄: 0.7 %纽约: 0.3 %纽约: 0.3 %芒廷维尤: 23.8 %芒廷维尤: 23.8 %芝加哥: 1.7 %芝加哥: 1.7 %荆州: 0.3 %荆州: 0.3 %西宁: 4.6 %西宁: 4.6 %西安: 1.7 %西安: 1.7 %西雅图: 1.0 %西雅图: 1.0 %诺沃克: 5.3 %诺沃克: 5.3 %贵阳: 1.0 %贵阳: 1.0 %运城: 2.6 %运城: 2.6 %遂宁: 0.3 %遂宁: 0.3 %重庆: 1.0 %重庆: 1.0 %长春: 0.3 %长春: 0.3 %青岛: 1.7 %青岛: 1.7 %驻马店: 19.2 %驻马店: 19.2 %其他三亚上海东营临汾乌鲁木齐保定克拉玛依北京南京呼和浩特哥伦布天津常德广州廊坊张家口成都拉贾斯坦邦昆明武汉焦作石家庄纽约芒廷维尤芝加哥荆州西宁西安西雅图诺沃克贵阳运城遂宁重庆长春青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views (195) PDF downloads(42) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return