Volume 41 Issue 4
Sep.  2024
Turn off MathJax
Article Contents
YIN Hui, LIU Huajie, JI Chengyuan, et al.Progress in studying affecting factors and alkaline-activated reaction of activity of metakaolin[J]. Drilling Fluid & Completion Fluid,2024, 41(4):419-426 doi: 10.12358/j.issn.1001-5620.2024.04.001
Citation: YIN Hui, LIU Huajie, JI Chengyuan, et al.Progress in studying affecting factors and alkaline-activated reaction of activity of metakaolin[J]. Drilling Fluid & Completion Fluid,2024, 41(4):419-426 doi: 10.12358/j.issn.1001-5620.2024.04.001

Progress in Studying Affecting Factors and Alkaline-Activated Reaction of Activity of Metakaolin

doi: 10.12358/j.issn.1001-5620.2024.04.001
  • Received Date: 2024-02-01
  • Rev Recd Date: 2024-03-10
  • Publish Date: 2024-09-30
  • Metakaolin has many advantages such as low energy consumption, low calcium content and resistance to CO2 corrosion, and is a potential substitute for conventional silicate cement. By summarizing the progresses made in studying the factors affecting the activity of metakaolin and the alkali-activation reaction, the feasibility of applying metakaolin in well cementing is analyzed. In this paper the factors affecting the activity of metakaolin are summarized, such as calcination temperature, calcination time as well as the aluminum oxide and silica contents of metakaolin. If the calcination temperature is too high or too low, and if the calcination time is too long or too short, the activity of the metakaolin will be low. This paper also introduces the factors affecting the alkali-activation reaction and the components of the products of alkali-activation reaction. It is thought that shortcomings exist in the present research work, and the future researches should be focused on the application of metakaolin in well cementing. In future researches, more attention should be paid to the effects of experimental factors on the thickening time of metakaolin cement slurries and to the methods of how to enhance the compressive strength of the metakaolin slurries without introducing high-calcium materials.

     

  • loading
  • [1]
    DAVIDOVITS J. Geopolymers: ceramic-like inorganic polymers[J]. Journal of Ceramic Science and Technology, 2017, 8(3):335-350.
    [2]
    许悦, 刘乐平. 偏高岭土在NaOH溶液中的反应过程与结构演变研究[J]. 广州化工,2022,50(6):58-61. doi: 10.3969/j.issn.1001-9677.2022.06.019

    XU Yue, LIU Leping. Study on reaction process and structural evolution of metakaolin in Sodium hydroxide solution[J]. Guangzhou Chemical Industry, 2022, 50(6):58-61. doi: 10.3969/j.issn.1001-9677.2022.06.019
    [3]
    ALBIDAH A S. Effect of partial replacement of geopolymer binder materials on the fresh and mechanical properties: a review[J]. Ceramics International, 2021, 47(11):14923-14943. doi: 10.1016/j.ceramint.2021.02.127
    [4]
    彭晖, 崔潮, 蔡春声, 等. 偏高岭土活性的煅烧温度影响及测定方法研究[J]. 硅酸盐通报,2014,33(8):2078-2084,2094.

    PENG Hui, CUI Chao, CAI Chunsheng, et al. Research on influence of calcination temperature on metakaolin reactivity and its determination[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8):2078-2084,2094.
    [5]
    陈宜俍, 郑娟荣, 陈晓堂, 等. 高岭土的活化及其地质聚合物的性能研究[J]. 化工矿物与加工,2008,37(1):11-14. doi: 10.3969/j.issn.1008-7524.2008.01.004

    CHEN Yiliang, ZHENG Juanrong, CHEN Xiaotang, et al. Activation of kaoline and its geopolymer's properties[J]. Industrial Minerals & Processing, 2008, 37(1):11-14. doi: 10.3969/j.issn.1008-7524.2008.01.004
    [6]
    郑广俭. 无定形Al2O3-2SiO2粉体制备及地质聚合反应机理研究[D]. 南宁: 广西大学, 2011.

    ZHENG Guangjian. Preparation of amorphous Al2O3-2SiO2 powder and its mechanism of geo-polymerization[D]. Nanning: Guangxi University, 2011.
    [7]
    VOGT O, UKRAINCZYK N, BALLSCHMIEDE C, et al. Reactivity and microstructure of metakaolin based geopolymers: effect of fly ash and liquid/solid contents[J]. Materials, 2019, 12(21):3485. doi: 10.3390/ma12213485
    [8]
    ZHANG Z H, WANG H, ZHU Y C, et al. Using fly ash to partially substitute metakaolin in geopolymer synthesis[J]. Applied Clay Science, 2014, 88/89:194-201. doi: 10.1016/j.clay.2013.12.025
    [9]
    WAN Q, RAO F, SONG S X, et al. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios[J]. Cement and Concrete Composites, 2017, 79:45-52. doi: 10.1016/j.cemconcomp.2017.01.014
    [10]
    BUMANIS G, VITOLA L, BAJARE D, et al. Impact of reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials[J]. Ceramics International, 2017, 43(7):5471-5477. doi: 10.1016/j.ceramint.2017.01.060
    [11]
    ZHOU X, CHEN Y C, DONG S X, et al. Geopolymerization kinetics of steel slag activated gasification coal fly ash: a case study for amorphous-rich slags[J]. Journal of Cleaner Production, 2022, 379, Part 1: 134671.
    [12]
    HUO W W, ZHU Z D, ZHANG J, et al. Utilization of OPC and FA to enhance reclaimed lime-fly ash macadam based geopolymers cured at ambient temperature[J]. Construction and Building Materials, 2021, 303:124378. doi: 10.1016/j.conbuildmat.2021.124378
    [13]
    JAYA N A, YUN-MING L, ABDULLAH M M A B, et al. Effect of Sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers [C]//Materials Science and Engineering Conference Series, 2018.
    [14]
    KLJAJEVIĆ L, NENADOVIĆ M, IVANOVIĆ M, et al. Heat treatment of geopolymer samples obtained by varying concentration of Sodium hydroxide as constituent of alkali activator[J]. GELS, 2022, 8(6):333. doi: 10.3390/gels8060333
    [15]
    NANA A, TOMÉ S, ANENSONG S C D, et al. Mechanical performance, phase evolution and microstructure of natural feldspathic solid solutions consolidated via alkali activation: effect of NaOH concentration[J]. Silicon, 2022, 14(8):4107-4120. doi: 10.1007/s12633-021-01193-2
    [16]
    NUAKLONG P, JONGVIVATSAKUL P, POTHISIRI T, et al. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete[J]. Journal of Cleaner Production, 2020, 252:119797. doi: 10.1016/j.jclepro.2019.119797
    [17]
    NUAKLONG P, SATA V, CHINDAPRASIRT P. Influence of recycled aggregate on fly ash geopolymer concrete properties[J]. Journal of Cleaner Production, 2016, 112, Part 4: 2300-2307.
    [18]
    DAI S S, WANG H G, AN S, et al. Mechanical properties and microstructural characterization of metakaolin geopolymers based on orthogonal tests[J]. Materials, 2022, 15(8):2957. doi: 10.3390/ma15082957
    [19]
    SHI X Z, ZHA Q K, LI S Q, et al. Experimental study on the mechanical properties and microstructure of Metakaolin-Based geopolymer modified clay[J]. Molecules, 2022, 27(15):4805. doi: 10.3390/molecules27154805
    [20]
    RAZAK R A, ABDULLAH M M A B, HUSSIN K, et al. Optimization of NaOH molarity, LUSI mud/alkaline activator, and Na2SiO3/NaOH ratio to produce lightweight Aggregate-Based geopolymer[J]. International Journal of Molecular Sciences, 2015, 16(5):11629-11647. doi: 10.3390/ijms160511629
    [21]
    ZULKIFLY K, CHENG-YONG H, YUN-MING L, et al. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers[J]. Construction and Building Materials, 2021, 270:121486. doi: 10.1016/j.conbuildmat.2020.121486
    [22]
    HAMDANE H, TAMRAOUI Y, MANSOURI S, et al. Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material[J]. Materials Chemistry and Physics, 2020, 248:122938. doi: 10.1016/j.matchemphys.2020.122938
    [23]
    ZHANG Z H, PROVIS J L, WANG H, et al. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin[J]. Thermochimica Acta, 2013, 565:163-171. doi: 10.1016/j.tca.2013.01.040
    [24]
    殷慧,柳华杰,安朝峰,等. 水玻璃复合堵漏体系中氯化钙控释技术[J]. 钻井液与完井液,2024,41(2):239-245.

    YIN Hui, LIU Huajie, AN Chaofeng, et al. Controlled release of calcium chloride from compounded waterglass-calcium chloride lost circulation material[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):239-245
    [25]
    薛彩红, 聂金合, 高莉, 等. 水玻璃对偏高岭土基地质聚合物材料性能的影响[J]. 非金属矿,2015,38(5):5-7. doi: 10.3969/j.issn.1000-8098.2015.05.002

    XUE Caihong, NIE Jinhe, GAO Li, et al. Effects of sodium silicate on the properties of metakaolin based geopolymer materials[J]. Non-Metallic Mines, 2015, 38(5):5-7. doi: 10.3969/j.issn.1000-8098.2015.05.002
    [26]
    陈治坤, 崔潮, 赵建伟, 等. 激发剂模数及活性对偏高岭土基地聚物强度的影响研究[J]. 公路与汽运,2016(6):76-79. doi: 10.3969/j.issn.1671-2668.2016.06.021

    CHEN Zhikun, CUI Chao, ZHAO Jianwei, et al. Effect of activator modulus and activity on polymer strength of metakaolin base[J]. Highways & Automotive Applications, 2016(6):76-79. doi: 10.3969/j.issn.1671-2668.2016.06.021
    [27]
    陆荟, 赵若红, 周新雨, 等. 不同基底材料与模数对碱激发胶凝材料导电性及抗压强度研究[J]. 混凝土,2019(12):11-17.

    LU Hui, ZHAO Ruohong, ZHOU Xinyu, et al. Research on electrical resistivity stability and compressive strength of different materials and modulus of water glass[J]. Concrete, 2019(12):11-17.
    [28]
    QING Y Z, XIANG T, GUO L X, et al. Investigation of setting time and microstructural and mechanical properties of Mk/GGBFS-Blended geopolymer pastes[J]. Materials, 2022, 15(23):8431. doi: 10.3390/ma15238431
    [29]
    何卓名, 邹家强, 刘爱华, 等. 液固比及养护机制对偏高岭土基地聚合物流动性和力学性能的影响[J]. 新型建筑材料,2017,44(12):98-101. doi: 10.3969/j.issn.1001-702X.2017.12.027

    HE Zhuoming, ZOU Jiaqiang, LIU Aihua, et al. Effect of liquid-solid ratio and maintenance mechanism on flow ability and mechanical properties of metakaolin based geopolymers[J]. New Building Materials, 2017, 44(12):98-101. doi: 10.3969/j.issn.1001-702X.2017.12.027
    [30]
    易鸣, 吴大志, 夏琳玲. 偏高岭土地质聚合物的制备及其抗压强度研究[J]. 粉煤灰综合利用,2019(6):31-35,71.

    YI Ming, WU Dazhi, XIA Linling. Study on preparation and compressive strength of metakaolin geopolymer[J]. Fly Ash Comprehensive Utilization, 2019(6):31-35,71.
    [31]
    钟卿瑜, 粟淼, 彭晖. 偏高岭土-矿渣地聚物宏观性能试验及Lasso回归模型[J]. 复合材料学报,2022,39(11):5474-5485.

    ZHONG Qingyu, SU Miao, PENG Hui. Experiment and Lasso regression model of the macroscopic performance of metakaolin-slag geopolymer paste[J]. Acta Materiae Compositae Sinica, 2022, 39(11):5474-–5485.
    [32]
    彭晖, 李树霖, 蔡春声, 等. 偏高岭土基地质聚合物的配合比及养护条件对其力学性能及凝结时间的影响研究[J]. 硅酸盐通报,2014,33(11):2809-2817,2827.

    PENG Hui, LI Shulin, CAI Chunsheng, et al. Study on effect of mix and curing conditions on the mechanical properties and setting time of metakaolin-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2809-2817,2827.
    [33]
    孙刚, 王有伟, 刘鑫军, 等. 地聚物基油气井固泥材料[J]. 钻井液与完井液,2022,39(3):339-345. doi: 10.12358/j.issn.1001-5620.2022.03.012

    SUN Gang, WANG Youwei, LIU Xinjun, et al. A geopolymer based oil and gas well cementing material[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):339-345. doi: 10.12358/j.issn.1001-5620.2022.03.012
    [34]
    步玉环, 赵乐天, 王春雨. 基于地质聚合物原理实现泥饼固化的固井质量改善方法[J]. 钻井液与完井液,2017,34(1):96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018

    BU Yuhuan, ZHAO Letian, WANG Chunyu. A solution to the improvement of the quality of cement sheath-formation bonding based on geopolymer theory[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018
    [35]
    殷慧,柳华杰,崔洁,等. 浅部地层自由套管外二次置换固井水泥浆体系研究[J]. 钻井液与完井液,2023,40(2):216-221.

    YIN Hui, LIU Huajie, CUI Jie, et al. Study on a cement slurry for cementing uncemented shallow section of old casing string by secondary displacement[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):216-–221
    [36]
    ASHISH D K, VERMA S K. Cementing efficiency of flash and Rotary-Calcined metakaolin in concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(12):12.
    [37]
    MABEYO P E, IBRAHIM Y S, GU J. Effect of high metakaolin content on compressive and shear-bond strengths of oil well cement at 80 C[J]. Construction and Building Materials, 2020, 240:117962. doi: 10.1016/j.conbuildmat.2019.117962
    [38]
    杨增民, 庄建山, 和建勇, 等. 地聚合物新型固井胶凝材料及其抗盐性能分析[J]. 钻井液与完井液,2017,34(5):79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015

    YANG Zengmin, ZHUANG Jianshan, HE Jianyong, et al. A new geopolymer well cementing gelled material and analysis of its resistance to salt attack[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015
    [39]
    BU Y H, DU J P, GUO S L, et al. Properties of oil well cement with high dosage of metakaolin[J]. Construction and Building Materials, 2016, 112:39-48. doi: 10.1016/j.conbuildmat.2016.02.173
    [40]
    刘洋. 偏高岭土基地质聚合物在高温固井中应用的可行性研究[D]. 青岛:中国石油大学(华东), 2016.

    LIU Yang. Feasibility study on application of metakaolin base polymer in high temperature cementing[D]. Qingdao: China University of Petroleum(East China), 2016.
    [41]
    BOWEN F, JIESHENG L, JING W, et al. Investigation on the impact of different activator to solid ratio on properties and micro-structure of metakaolin geopolymer[J]. Case Studies In Construction Materials, 2022, 16:e01127. doi: 10.1016/j.cscm.2022.e01127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (341) PDF downloads(234) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return