HE Minhui, YAO Ming, YAN Yubo, et al.Preparation and evaluation of an h2s corrosion inhibitor for znfe-ldhs oil well cement[J]. Drilling Fluid & Completion Fluid,2024, 41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012
Citation: HE Minhui, YAO Ming, YAN Yubo, et al.Preparation and evaluation of an h2s corrosion inhibitor for znfe-ldhs oil well cement[J]. Drilling Fluid & Completion Fluid,2024, 41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012

Preparation and Evaluation of an H2S Corrosion Inhibitor for ZnFe-LDHs Oil Well Cement

doi: 10.12358/j.issn.1001-5620.2024.03.012
  • Received Date: 2024-01-23
  • Rev Recd Date: 2024-03-02
  • Publish Date: 2024-06-30
  • In developing the highly acidic oil and gas resources which are abundant in China, the set cement in the wellbore will long endure the erosion of the acid media such as H2S, and the this seriously threatens the safe operation and production of the oil and gas wells. To deal with this problem, a ZnFe-LDHs type corrosion inhibitor against the corrosion by the H2S is developed through hydrothermal coprecipitation method. Set cement samples containing the selected ZnFe-LDHs are soaked in 5% Na2S solution at room temperature and 60 ℃ for 1 d, 3 d, 7 d, 14 d and 28 d, respectively. The ability of ZnFe-LDHs to resist H2S corrosion and the mechanisms of this resistance are then studied through compressive strength measurement, XRD and SEM. The study shows that the ZnFe-LDHs made at crystallization of 90 ℃ and Zn/Fe molar ratio of (1–4):1 has satisfactory corrosion control performance; it increases the compressive strength of the set cement and the compressive strength of the set cement increases with increase in the molar ratio of Zn/Fe, that is, the ZnFe-LDHs with Zn/Fe molar ratio of 4:1 has the best effect on the compressive strength of the set cement; the compressive strength of the set cement is increased by 10.11%. When the set cement sample are soaked in Na2S solution, the early strength of the set cement decreases. After soaking for 7 d, the compressive strength of the set cement soaked at room temperature and at 60 ℃ is increased by 8.73% and 4.96%, respectively. When the soaking time is longer than 7 d, the compressive strength of the set cement becomes stable, the reason for this is that ZnFe-LDHs is able to promote hydration reaction, and in the later stage of the soaking, ZnFe-LDHs react with Na2S to produce ZnS, thereby increasing the density of the set cement and preventing the corrosion of H2S to the set cement.

     

  • [1]
    周康. 高含硫天然气在管道输送中防腐对策研究[J]. 中国石油和化工标准与质量,2023,43(17):40-42.

    ZHOU Kang. Research on anti-corrosion countermeasures of high Sulfur natural gas in pipeline transportation[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(17):40-42.
    [2]
    牟春国,胡子见,韩勇,等. 固井水泥石的硫化氢腐蚀机理与抗腐蚀方法研究[J]. 石油化工应用,2010,29(2):113-116,125.

    MU Chunguo, HU Zijian, HAN Yong, et al. The hydrogen sulfide corrosion and protection of well cement sheath[J]. Petrochemical Industry Application, 2010, 29(2):113-116,125.
    [3]
    张红丹. 水溶性树脂水泥浆体系的抗腐蚀性能研究[D]. 成都: 西南石油大学, 2016.

    ZHANG Hongdan. Study on corrosion resistance of water-soluble resin slurry system[D]. Chengdu: Southwest Petroleum University, 2016.
    [4]
    严思明,王杰,卿大咏,等. 硫化氢对固井水泥石腐蚀研究[J]. 油田化学,2010,27(4):366-370,394.

    YAN Siming, WANG Jie, QING Dayong, et al. Research on corrosion of oil well cement stone by H2S[J]. Oilfield Chemistry, 2010, 27(4):366-370,394.
    [5]
    邓成辉,金勇. 无固化剂水性树脂提高固井水泥石抗腐蚀性能[J]. 油田化学,2022,39(4):584-588,629.

    DENG Chenghui, JIN Yong. Corrosion resistance improvement of cement paste by waterborne resin without curing agent[J]. Oilfield Chemistry, 2022, 39(4):584-588,629.
    [6]
    岳家平,武治强,王晓亮,等. 水泥石防H2S/CO2腐蚀机理及防治措施[J]. 当代化工,2020,49(9):2033-2036.

    YUE Jiaping, WU Zhiqiang, WANG Xiaoliang, et al. Mechanism and prevention measures of H2S/CO2 corrosion for cement paste[J]. Contemporary Chemical Industry, 2020, 49(9):2033-2036.
    [7]
    辜涛. 高酸性气田环境下油井水泥石腐蚀机理研究[D]. 成都: 西南石油大学, 2013.

    GU Tao. Research on corrosion mechanism of oil well cement under high acid gas field environment[D]. Chengdu: Southwest Petroleum University, 2013.
    [8]
    顾香. 防H2S腐蚀TH树脂水泥浆体系研究[D]. 成都: 西南石油大学, 2012.

    GU Xiang. Study on anti-H2S corrosion TH resin cement slurry system[D]. Chengdu: Southwest Petroleum University, 2012.
    [9]
    王升正. 碱式碳酸锌对油井水泥石抗H2S腐蚀性能影响研究[D]. 成都: 西南石油大学, 2016.

    WANG Shengzheng. Effect of basic zinc carbonate on H2S corrosion resistance of oil well cement[D]. Chengdu: Southwest Petroleum University, 2016.
    [10]
    梁玉凯,陈霄,张瑞金,等. 含H2S生产污水回注井解堵增注剂研究与应用[J]. 海洋石油,2015,35(3):42-45.

    LIANG Yukai, CHEN Xiao, ZHANG Ruijin, et al. Study and application of agents for increasing water injection in wells rejecting sewage containing H2S[J]. Offshore Oil, 2015, 35(3):42-45.
    [11]
    郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.

    GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221-226.
    [12]
    王智超. 城市污水处理厂硫化氢排放特征及释放模型研究[D]. 北京: 清华大学, 2013.

    WANG Zhichao. Characteristics and simulation of hydrogen sulfide emission in a municipal wastewater treatment plant[D]. Beijing: Tsinghua University, 2013.
    [13]
    BÉLÉKÉ A B,MIZUHATA M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition[J]. Journal of Power Sources, 2010, 195(22):7669-7676. doi: 10.1016/j.jpowsour.2010.05.068
    [14]
    WANG Y G, CHENG L, XIA Y Y. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J]. Journal of Power Sources, 2006, 153(1):191-196. doi: 10.1016/j.jpowsour.2005.04.009
    [15]
    ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96:280-291. doi: 10.1016/j.watres.2016.03.063
    [16]
    ZHANG Z X, LI P L, ZHANG X, et al. Recent advances in Layered-Double-Hydroxides based noble metal nanoparticles efficient electrocatalysts[J]. Nanomaterials, 2021, 11(10):2644. doi: 10.3390/nano11102644
    [17]
    WEN J, LV Y H, XU Y Q, et al. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy[J]. Acta Biomaterialia, 2019, 83(1):359-371.
    [18]
    LI Z S, XIAO K C, YU C L, et al. Three-dimensional graphene-like carbon nanosheets coupled with MnCo-layered double hydroxides nanoflowers as efficient bifunctional oxygen electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(69):34239-34251. doi: 10.1016/j.ijhydene.2021.07.221
    [19]
    XU W Z, ZHANG B L, XU B L, et al. The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91(1):30-40.
    [20]
    WANG J, LI Y S, CHEN W Y, et al. The rapid coagulation of graphene oxide on La-doped layered double hydroxides[J]. Chemical Engineering Journal, 2017, 309:445-453. doi: 10.1016/j.cej.2016.10.053
    [21]
    American Petroleum Institute. Recommended practice for testing well cements: API RP 10B-2[S]. Washington: API, 2013.
    [22]
    ZHANG T, XIAO M, ZHANG Z G, et al. Intercalation of aceclofenac/sulfobutyl ether-β-cyclodextrin complex into layered double hydroxides through swelling/restoration reaction and its controlled-release properties[J]. Journal of Nanomaterials, 2014, 2014:123781.
    [23]
    杨保俊,薛中华,王百年,等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报,2014,31(2):353-361.

    YANG Baojun, XUE Zhonghua, WANG Bainian, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2):353-361.
    [24]
    陈荣耀,宋建建,武中涛,等. 耐高温高密度防腐固井水泥浆[J]. 钻井液与完井液,2022,39(5):601-607.

    CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al. High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):601-607.
    [25]
    刘京,王百年,王宇,等. ZnAl-LDHs阻燃剂的改性及其在ABS中的应用[J]. 化工进展,2017,36(z1):361-365.

    LIU Jing, WANG Bainian, WANG Yu, et al. Surface modification of flame retardant ZnAl-LDHs and its application to ABS[J]. Chemical Industry and Engineering Progress, 2017, 36(z1):361-365.
    [26]
    郭洪山,杨康博,姜浩然,等. 层状双氢氧化物在防腐领域应用的研究进展[J]. 石油化工高等学校学报,2023,36(3):44-51.

    GUO Hongshan, YANG Kangbo, JIANG Haoran, et al. Research progress of layered double hydroxide in the field of anticorrosion[J]. Journal of Petrochemical Universities, 2023, 36(3):44-51.
    [27]
    潘国祥,陈健,胡双双,等. 镍锰水滑石制备及其热分解性能[J]. 稀有金属材料与工程,2016,45(S1):165-167.

    PAN Guoxiang, CHEN Jian, HU Shuangshuang, et al. Preparation and thermal decomposition properties of NiMn layered double hydroxides by an oxidation precipitation method[J]. Rare Metal Materials and Engineering, 2016, 45(S1):165-167.
    [28]
    马炼. LDHs二维片层材料的结构调控及其抗腐蚀机制研究[D]. 北京: 中国科学院大学, 2021.

    MA Lian. The structure control and corrosion resistance mechanism of LDHs two-dimensional lamellar materials[D]. Beijing: University of Chinese Academy of Sciences, 2021.
  • Relative Articles

    [1]WANG Xiying. Study on Corrosion Rate of Cement Monomineralic C2S in CO2 Geological Sequestration Environment[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(5): 646-653. doi: 10.12358/j.issn.1001-5620.2024.05.012
    [2]WU Zhiqiang, WU Guang’ai, XING Xuesong. Sealing Integrity of Cement Sheath under the Condition of CO2 Corrosion–Stress Coupling[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(2): 220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012
    [3]TIAN Leiju, ZHU Haijin, LU Haichuan, HOU Wei, BU Yuhuan. Progress in Studying on Improving Mechanical Property of Set Cement in Well Cementing[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(6): 695-708. doi: 10.12358/j.issn.1001-5620.2024.06.001
    [4]WANG Jia, ZHANG Chunmei, ZHANG Ye, CHENG Xiaowei, MEI Kaiyuan. Effects of Rock Asphalt with Surface Grafted C—S—H on Mechanical Properties of Set Cement in High Temperature Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(6): 806-814. doi: 10.12358/j.issn.1001-5620.2023.06.016
    [5]YU Lin, TAN Huijing, REN Yang, LIU Siyan, YE You. Study on the Influence of Elastic Toughness Cement Slurry Performance and Short-term Corrosion Mechanism under HPHTHS Conditions[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(2): 222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011
    [6]LIU Jian, ZHANG Zeyu, WEI Haoguang, WANG Mu, ZHOU Shiming. Development of New Oil Well Cement Retarder[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 615-621. doi: 10.12358/j.issn.1001-5620.2022.05.013
    [7]ZHAO Jiansheng, DAI Qing, HUO Jinhua, LI Yang. Preparation and Application of Fluid Loss Additive GT-1 for High Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017
    [8]WU Zhongtao, SONG Jianjian, LIU Weihong, ZHAO Jun, XU Mingbiao, WANG Xiaoliang. Study on Selection of Weighting Agent for Hhigh-Ttemperature and High-Density Anticorrosive Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 346-351. doi: 10.12358/j.issn.1001-5620.2022.03.013
    [9]YU Yongjin, ZHANG Hang, XIA Xiujian, LI Pengpeng, JIN Jianzhou, HU Miaomiao, GUO Jintang. Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014
    [10]LUO Min, HUANG Sheng, HE Xusheng, LI Zaoyuan, CHENG Xiaowei. The Preparation and Performance Characterization of a Cement Suspending Agent Resistant to 200 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(4): 472-480. doi: 10.12358/j.issn.1001-5620.2022.04.012
    [11]ZHAO Shuxun, ZUO Tianpeng, CHEN Xu, ZHENG Yijie, CHENG Xiaowei. Effects of Drilling Fluid Encapsulators on Well Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 359-364. doi: 10.12358/j.issn.1001-5620.2022.03.015
    [12]CHEN Rongyao, SONG Jianjian, WU Zhongtao, SHI Ligang, ZHAO Jun, WANG Xuechun, LIU Shikang. High Temperature High Density Cement Slurry with Corrosion Inhibition Property[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 601-607. doi: 10.12358/j.issn.1001-5620.2022.05.011
    [13]LI Yunjie, LI Qian, XU Jianjun. Application and Analysis of the Synergy between Oil Well Cement Expanding Agents and Oil Well Cement Tougheners[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 102-108. doi: 10.3969/j.issn.1001-5620.2021.01.017
    [14]MIN Jiangben, LIU Xiaoli, WAN Xiangchen. Corrosion Inhibitive Cement Slurry and Supporting Techniques for Cementing the Luohe Aquifer in Changqing Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(2): 231-236. doi: 10.3969/j.issn.1001-5620.2021.02.017
    [15]ZHANG Fuming, QI Ying, CHEN Xiaohua, MA Xiaokang, CUI Xinsen. A Well Cementing Slurry Used in Arctic Permafrost[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 757-762. doi: 10.3969/j.issn.1001-5620.2020.06.014
    [16]WANG Chunyu, BU Yuhuan, SHEN Zhonghou. Study on the Mechanism of Expansive Self-Healing Additives for Oil Well Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(6): 98-102,107. doi: 10.3969/j.issn.1001-5620.2018.06.018
    [17]BU Yvhuan, HOU Xianhai, GUO Shenglai. Study on Low Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 79-83. doi: 10.3969/j.issn.1001-5620.2016.01.016
    [18]YAN Siming, WANG Fuhui, GAO Jin, LI Xingwu, LIAO Yongmei. Study on Working Mechanism of Oil Well Cement Retarder BH[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(2): 64-66,71. doi: 10.3969/j.issn.1001-5620.2015.02.017
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.9 %FULLTEXT: 23.9 %META: 65.2 %META: 65.2 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 0.2 %其他: 0.2 %China: 0.7 %China: 0.7 %North Point: 0.7 %North Point: 0.7 %三亚: 0.7 %三亚: 0.7 %上海: 0.2 %上海: 0.2 %东营: 0.2 %东营: 0.2 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.7 %乌鲁木齐: 0.7 %保定: 0.2 %保定: 0.2 %北京: 2.4 %北京: 2.4 %北海: 0.2 %北海: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南充: 1.4 %南充: 1.4 %台州: 0.9 %台州: 0.9 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %大庆: 0.2 %大庆: 0.2 %天津: 0.7 %天津: 0.7 %宜昌: 0.2 %宜昌: 0.2 %巴中: 0.2 %巴中: 0.2 %常德: 0.2 %常德: 0.2 %廊坊: 0.2 %廊坊: 0.2 %张家口: 5.4 %张家口: 5.4 %成都: 3.5 %成都: 3.5 %新乡: 0.5 %新乡: 0.5 %昆明: 0.9 %昆明: 0.9 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %深圳: 0.5 %深圳: 0.5 %湖州: 0.7 %湖州: 0.7 %焦作: 0.2 %焦作: 0.2 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 37.1 %芒廷维尤: 37.1 %芝加哥: 0.2 %芝加哥: 0.2 %菏泽: 0.2 %菏泽: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 1.4 %西宁: 1.4 %西安: 0.5 %西安: 0.5 %诺沃克: 4.7 %诺沃克: 4.7 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.9 %运城: 1.9 %遂宁: 0.5 %遂宁: 0.5 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %重庆: 0.5 %重庆: 0.5 %长沙: 0.2 %长沙: 0.2 %驻马店: 18.0 %驻马店: 18.0 %其他其他ChinaNorth Point三亚上海东营临汾乌鲁木齐保定北京北海华盛顿州南充台州呼和浩特哥伦布大庆天津宜昌巴中常德廊坊张家口成都新乡昆明杭州格兰特县武汉深圳湖州焦作石家庄秦皇岛绵阳芒廷维尤芝加哥菏泽衢州西宁西安诺沃克贵阳运城遂宁遵义邯郸重庆长沙驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (275) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return