Citation: | HE Minhui, YAO Ming, YAN Yubo, et al.Preparation and evaluation of an h2s corrosion inhibitor for znfe-ldhs oil well cement[J]. Drilling Fluid & Completion Fluid,2024, 41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012 |
[1] |
周康. 高含硫天然气在管道输送中防腐对策研究[J]. 中国石油和化工标准与质量,2023,43(17):40-42.
ZHOU Kang. Research on anti-corrosion countermeasures of high Sulfur natural gas in pipeline transportation[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(17):40-42.
|
[2] |
牟春国,胡子见,韩勇,等. 固井水泥石的硫化氢腐蚀机理与抗腐蚀方法研究[J]. 石油化工应用,2010,29(2):113-116,125.
MU Chunguo, HU Zijian, HAN Yong, et al. The hydrogen sulfide corrosion and protection of well cement sheath[J]. Petrochemical Industry Application, 2010, 29(2):113-116,125.
|
[3] |
张红丹. 水溶性树脂水泥浆体系的抗腐蚀性能研究[D]. 成都: 西南石油大学, 2016.
ZHANG Hongdan. Study on corrosion resistance of water-soluble resin slurry system[D]. Chengdu: Southwest Petroleum University, 2016.
|
[4] |
严思明,王杰,卿大咏,等. 硫化氢对固井水泥石腐蚀研究[J]. 油田化学,2010,27(4):366-370,394.
YAN Siming, WANG Jie, QING Dayong, et al. Research on corrosion of oil well cement stone by H2S[J]. Oilfield Chemistry, 2010, 27(4):366-370,394.
|
[5] |
邓成辉,金勇. 无固化剂水性树脂提高固井水泥石抗腐蚀性能[J]. 油田化学,2022,39(4):584-588,629.
DENG Chenghui, JIN Yong. Corrosion resistance improvement of cement paste by waterborne resin without curing agent[J]. Oilfield Chemistry, 2022, 39(4):584-588,629.
|
[6] |
岳家平,武治强,王晓亮,等. 水泥石防H2S/CO2腐蚀机理及防治措施[J]. 当代化工,2020,49(9):2033-2036.
YUE Jiaping, WU Zhiqiang, WANG Xiaoliang, et al. Mechanism and prevention measures of H2S/CO2 corrosion for cement paste[J]. Contemporary Chemical Industry, 2020, 49(9):2033-2036.
|
[7] |
辜涛. 高酸性气田环境下油井水泥石腐蚀机理研究[D]. 成都: 西南石油大学, 2013.
GU Tao. Research on corrosion mechanism of oil well cement under high acid gas field environment[D]. Chengdu: Southwest Petroleum University, 2013.
|
[8] |
顾香. 防H2S腐蚀TH树脂水泥浆体系研究[D]. 成都: 西南石油大学, 2012.
GU Xiang. Study on anti-H2S corrosion TH resin cement slurry system[D]. Chengdu: Southwest Petroleum University, 2012.
|
[9] |
王升正. 碱式碳酸锌对油井水泥石抗H2S腐蚀性能影响研究[D]. 成都: 西南石油大学, 2016.
WANG Shengzheng. Effect of basic zinc carbonate on H2S corrosion resistance of oil well cement[D]. Chengdu: Southwest Petroleum University, 2016.
|
[10] |
梁玉凯,陈霄,张瑞金,等. 含H2S生产污水回注井解堵增注剂研究与应用[J]. 海洋石油,2015,35(3):42-45.
LIANG Yukai, CHEN Xiao, ZHANG Ruijin, et al. Study and application of agents for increasing water injection in wells rejecting sewage containing H2S[J]. Offshore Oil, 2015, 35(3):42-45.
|
[11] |
郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.
GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221-226.
|
[12] |
王智超. 城市污水处理厂硫化氢排放特征及释放模型研究[D]. 北京: 清华大学, 2013.
WANG Zhichao. Characteristics and simulation of hydrogen sulfide emission in a municipal wastewater treatment plant[D]. Beijing: Tsinghua University, 2013.
|
[13] |
BÉLÉKÉ A B,MIZUHATA M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition[J]. Journal of Power Sources, 2010, 195(22):7669-7676. doi: 10.1016/j.jpowsour.2010.05.068
|
[14] |
WANG Y G, CHENG L, XIA Y Y. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J]. Journal of Power Sources, 2006, 153(1):191-196. doi: 10.1016/j.jpowsour.2005.04.009
|
[15] |
ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96:280-291. doi: 10.1016/j.watres.2016.03.063
|
[16] |
ZHANG Z X, LI P L, ZHANG X, et al. Recent advances in Layered-Double-Hydroxides based noble metal nanoparticles efficient electrocatalysts[J]. Nanomaterials, 2021, 11(10):2644. doi: 10.3390/nano11102644
|
[17] |
WEN J, LV Y H, XU Y Q, et al. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy[J]. Acta Biomaterialia, 2019, 83(1):359-371.
|
[18] |
LI Z S, XIAO K C, YU C L, et al. Three-dimensional graphene-like carbon nanosheets coupled with MnCo-layered double hydroxides nanoflowers as efficient bifunctional oxygen electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(69):34239-34251. doi: 10.1016/j.ijhydene.2021.07.221
|
[19] |
XU W Z, ZHANG B L, XU B L, et al. The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91(1):30-40.
|
[20] |
WANG J, LI Y S, CHEN W Y, et al. The rapid coagulation of graphene oxide on La-doped layered double hydroxides[J]. Chemical Engineering Journal, 2017, 309:445-453. doi: 10.1016/j.cej.2016.10.053
|
[21] |
American Petroleum Institute. Recommended practice for testing well cements: API RP 10B-2[S]. Washington: API, 2013.
|
[22] |
ZHANG T, XIAO M, ZHANG Z G, et al. Intercalation of aceclofenac/sulfobutyl ether-β-cyclodextrin complex into layered double hydroxides through swelling/restoration reaction and its controlled-release properties[J]. Journal of Nanomaterials, 2014, 2014:123781.
|
[23] |
杨保俊,薛中华,王百年,等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报,2014,31(2):353-361.
YANG Baojun, XUE Zhonghua, WANG Bainian, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2):353-361.
|
[24] |
陈荣耀,宋建建,武中涛,等. 耐高温高密度防腐固井水泥浆[J]. 钻井液与完井液,2022,39(5):601-607.
CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al. High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):601-607.
|
[25] |
刘京,王百年,王宇,等. ZnAl-LDHs阻燃剂的改性及其在ABS中的应用[J]. 化工进展,2017,36(z1):361-365.
LIU Jing, WANG Bainian, WANG Yu, et al. Surface modification of flame retardant ZnAl-LDHs and its application to ABS[J]. Chemical Industry and Engineering Progress, 2017, 36(z1):361-365.
|
[26] |
郭洪山,杨康博,姜浩然,等. 层状双氢氧化物在防腐领域应用的研究进展[J]. 石油化工高等学校学报,2023,36(3):44-51.
GUO Hongshan, YANG Kangbo, JIANG Haoran, et al. Research progress of layered double hydroxide in the field of anticorrosion[J]. Journal of Petrochemical Universities, 2023, 36(3):44-51.
|
[27] |
潘国祥,陈健,胡双双,等. 镍锰水滑石制备及其热分解性能[J]. 稀有金属材料与工程,2016,45(S1):165-167.
PAN Guoxiang, CHEN Jian, HU Shuangshuang, et al. Preparation and thermal decomposition properties of NiMn layered double hydroxides by an oxidation precipitation method[J]. Rare Metal Materials and Engineering, 2016, 45(S1):165-167.
|
[28] |
马炼. LDHs二维片层材料的结构调控及其抗腐蚀机制研究[D]. 北京: 中国科学院大学, 2021.
MA Lian. The structure control and corrosion resistance mechanism of LDHs two-dimensional lamellar materials[D]. Beijing: University of Chinese Academy of Sciences, 2021.
|
[1] | WANG Xiying. Study on Corrosion Rate of Cement Monomineralic C2S in CO2 Geological Sequestration Environment[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(5): 646-653. doi: 10.12358/j.issn.1001-5620.2024.05.012 |
[2] | WU Zhiqiang, WU Guang’ai, XING Xuesong. Sealing Integrity of Cement Sheath under the Condition of CO2 Corrosion–Stress Coupling[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(2): 220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012 |
[3] | TIAN Leiju, ZHU Haijin, LU Haichuan, HOU Wei, BU Yuhuan. Progress in Studying on Improving Mechanical Property of Set Cement in Well Cementing[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(6): 695-708. doi: 10.12358/j.issn.1001-5620.2024.06.001 |
[4] | WANG Jia, ZHANG Chunmei, ZHANG Ye, CHENG Xiaowei, MEI Kaiyuan. Effects of Rock Asphalt with Surface Grafted C—S—H on Mechanical Properties of Set Cement in High Temperature Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(6): 806-814. doi: 10.12358/j.issn.1001-5620.2023.06.016 |
[5] | YU Lin, TAN Huijing, REN Yang, LIU Siyan, YE You. Study on the Influence of Elastic Toughness Cement Slurry Performance and Short-term Corrosion Mechanism under HPHTHS Conditions[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(2): 222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011 |
[6] | LIU Jian, ZHANG Zeyu, WEI Haoguang, WANG Mu, ZHOU Shiming. Development of New Oil Well Cement Retarder[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 615-621. doi: 10.12358/j.issn.1001-5620.2022.05.013 |
[7] | ZHAO Jiansheng, DAI Qing, HUO Jinhua, LI Yang. Preparation and Application of Fluid Loss Additive GT-1 for High Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017 |
[8] | WU Zhongtao, SONG Jianjian, LIU Weihong, ZHAO Jun, XU Mingbiao, WANG Xiaoliang. Study on Selection of Weighting Agent for Hhigh-Ttemperature and High-Density Anticorrosive Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 346-351. doi: 10.12358/j.issn.1001-5620.2022.03.013 |
[9] | YU Yongjin, ZHANG Hang, XIA Xiujian, LI Pengpeng, JIN Jianzhou, HU Miaomiao, GUO Jintang. Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014 |
[10] | LUO Min, HUANG Sheng, HE Xusheng, LI Zaoyuan, CHENG Xiaowei. The Preparation and Performance Characterization of a Cement Suspending Agent Resistant to 200 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(4): 472-480. doi: 10.12358/j.issn.1001-5620.2022.04.012 |
[11] | ZHAO Shuxun, ZUO Tianpeng, CHEN Xu, ZHENG Yijie, CHENG Xiaowei. Effects of Drilling Fluid Encapsulators on Well Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 359-364. doi: 10.12358/j.issn.1001-5620.2022.03.015 |
[12] | CHEN Rongyao, SONG Jianjian, WU Zhongtao, SHI Ligang, ZHAO Jun, WANG Xuechun, LIU Shikang. High Temperature High Density Cement Slurry with Corrosion Inhibition Property[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 601-607. doi: 10.12358/j.issn.1001-5620.2022.05.011 |
[13] | LI Yunjie, LI Qian, XU Jianjun. Application and Analysis of the Synergy between Oil Well Cement Expanding Agents and Oil Well Cement Tougheners[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 102-108. doi: 10.3969/j.issn.1001-5620.2021.01.017 |
[14] | MIN Jiangben, LIU Xiaoli, WAN Xiangchen. Corrosion Inhibitive Cement Slurry and Supporting Techniques for Cementing the Luohe Aquifer in Changqing Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(2): 231-236. doi: 10.3969/j.issn.1001-5620.2021.02.017 |
[15] | ZHANG Fuming, QI Ying, CHEN Xiaohua, MA Xiaokang, CUI Xinsen. A Well Cementing Slurry Used in Arctic Permafrost[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 757-762. doi: 10.3969/j.issn.1001-5620.2020.06.014 |
[16] | WANG Chunyu, BU Yuhuan, SHEN Zhonghou. Study on the Mechanism of Expansive Self-Healing Additives for Oil Well Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(6): 98-102,107. doi: 10.3969/j.issn.1001-5620.2018.06.018 |
[17] | BU Yvhuan, HOU Xianhai, GUO Shenglai. Study on Low Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 79-83. doi: 10.3969/j.issn.1001-5620.2016.01.016 |
[18] | YAN Siming, WANG Fuhui, GAO Jin, LI Xingwu, LIAO Yongmei. Study on Working Mechanism of Oil Well Cement Retarder BH[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(2): 64-66,71. doi: 10.3969/j.issn.1001-5620.2015.02.017 |