Volume 41 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
XU Hongzhi, SONG Weichen, BU Yuhuan, et al.A low temperature early strength gel material based on reconstruction of hydrate layer frame[J]. Drilling Fluid & Completion Fluid,2024, 41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011
Citation: XU Hongzhi, SONG Weichen, BU Yuhuan, et al.A low temperature early strength gel material based on reconstruction of hydrate layer frame[J]. Drilling Fluid & Completion Fluid,2024, 41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011

A Low Temperature Early Strength Gel Material Based on Reconstruction of Hydrate Layer Frame

doi: 10.12358/j.issn.1001-5620.2024.03.011
  • Received Date: 2023-11-05
  • Rev Recd Date: 2023-12-25
  • Publish Date: 2024-06-30
  • In the trial production of natural gas hydrate resources, sand production often forces the operation to terminate. A study, aimed at the construction of low temperature early strength gel materials through reconstruction of hydrate layer frames, is conducted based on the experiences gained in the second trail production of hydrate resources and the theory of intralayer reinforcement and sand control. In the study, the low temperature early strength, the long-term length and the particle size distribution of three kinds of cement, which are Jiahua class G, ultra-fine cement and early strength cement, are compared. Based on satisfying the requirements of reconstructing pore sizes through intralayer reinforcement of frames, the components of the low temperature early strength gel materials are designed. The early strength of the solidification body is increased to a degree that is as high as possible taking into account the fluidity of the cement slurry, the early strength and the cost as the main design targets, thereby leaving more space for the strength decline in subsequent permeability improvement. By studying the ratio of the ultra-fine oil well cement to the Jiahua class G cement, optimizing the early strength agents and their concentrations, a low temperature early strength gel system is developed. The low temperature early strength gel system has 24 h compressive strength in 15 ℃ water bath of 12.86 MPa, good fluidity and controllable thickening time and filtration rate. Compared with other low temperature early strength cement slurries introduced in relevant literatures, this cement slurry has better permeability enhancement and high strength characteristics. This study has laid the material foundation for subsequent researches on frame reconstructing high permeability high strength working fluid systems within hydrate layers.

     

  • loading
  • [1]
    吴西顺,黄文斌,刘文超,等. 全球天然气水合物资源潜力评价及勘查试采进展[J]. 海洋地质前沿,2017,33(7):63-78.

    WU Xishun, HUANG Wenbin, LIU Wenchao, et al. Evaluation of global natural gas hydrate resource potential and progress of exploration and test production[J]. Marine Geology Frontiers, 2017, 33(7):63-78.
    [2]
    张光学,梁金强,陆敬安,等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业,2014,34(11):1-10.

    ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.
    [3]
    刘昌岭,李彦龙,孙建业,等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26.

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5):12-26.
    [4]
    董长银,闫切海,李彦龙,等. 天然气水合物储层颗粒级尺度微观出砂数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(6):77-87.

    DONG Changyin, YAN Qiehai, LI Yanlong, et al. Numerical simulation of sand production based on a grain scale microcosmic model for natural gas hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(6):77-87.
    [5]
    DU J P, BU Y H, SHEN Zhonghou, et al. Maximum penetration depth and penetration time predicting model of cementing fluid flow through wellbore into weakly consolidated formation[J]. Fractals, 2019, 27(8):1950132. doi: 10.1142/S0218348X19501329
    [6]
    DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Construction and Building Materials, 2018, 164:103-112. doi: 10.1016/j.conbuildmat.2017.12.200
    [7]
    DU J P, BU Y H, SHEN Z H, et al. A novel fluid for use in oil and gas well construction to prevent the oil and gas leak from the wellbore[J]. Construction and Building Materials, 2019, 217:626-637. doi: 10.1016/j.conbuildmat.2019.05.100
    [8]
    DU J P, BU Y H, SHEN Z H, et al. Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature[J]. Materials & Design, 2016, 109:133-145.
    [9]
    BU Y H, DU J P, GUO S L, et al. Properties of oil well cement with high dosage of metakaolin[J]. Construction and Building Materials, 2016, 112:39-48. doi: 10.1016/j.conbuildmat.2016.02.173
    [10]
    YUHUAN B, JIAPEI D, HUAJIE L, et al. A integrated liquid of Cementing-Formation welding integrated fluid to weakly cemented strata in deep water[M]. [S. l. ]: [s. n. ], 2017.
    [11]
    YUHUAN B, DONG L, HUAJIE L, et al. Theory and implementation method of strengthening and preventing collapse and sand control in natural gas hydrate formation[M]. [S. l. ]: [s. n. ], 2021.
    [12]
    步玉环, 林栋, 柳华杰, 等. 天然气水合物地层层内加固防塌、防砂理论及实现方法: CN202110972005.0[P]. 2021-08-24.

    BU Yuhuan, LIN Dong, LIU Huajie, et al. Theory and realization method of anti-collapsing and sand control in layer reinforcement of natural gas hydrate: CN202110972005.0[P]. 2021-08-24.
    [13]
    王成文,陈大钧,陈二丁,等. 复杂井固井低密度水泥浆体系性能研究[J]. 天然气工业,2006,26(7):65-67.

    WANG Chengwen, CHEN Dajun, CHEN Erding, et al. Study on properties of low-density cement slurry for complicated cementing[J]. Natural Gas Industry, 2006, 26(7):65-67.
    [14]
    PLANK J, ECHT T. C-S-H-PCE nanofoils: a new generation of accelerators for oil well cement[C]//SPE International Conference on Oilfield Chemistry. Galveston: SPE, 2019: SPE-193639-MS.
    [15]
    王瑞和,齐志刚,步玉环,等. 一种新型曼尼希碱促凝剂的性能研究[J]. 石油钻探技术,2009,37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003

    WANG Ruihe, QI Zhigang, BU Yuhuan, et al. Study of a new mannich-based accelerating agent[J]. Petroleum Drilling Techniques, 2009, 37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003
    [16]
    侯献海,步玉环,郭胜来,等. 纳米二氧化硅复合早强剂的开发与性能评价[J]. 石油钻采工艺,2016,38(3):322-326.

    HOU Xianhai, BU Yuhuan, GUO Shenglai, et al. Development and performance evaluation of Nano-SiO2 complex accelerator[J]. Oil Drilling & Production Technology, 2016, 38(3):322-326.
    [17]
    步玉环,侯献海,郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液,2016,33(1):79-83.

    BU Yuhuan, HOU Xianhai, GUO Shenglai. Study on low temperature cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):79-83.
    [18]
    孟双,宋建建,许明标,等. 新型低温固井早强剂性能研究[J]. 钻井液与完井液,2023,40(1):96-102.

    MENG Shuang, SONG Jianjian, XU Mingbiao, et al. Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):96-102.
    [19]
    TALONG D, KUMAR A, SARMA A, et al. 200 and counting: unlocking cbm potential with high-strength, low-density cement slurry[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Jakarta: SPE, 2017: SPE-186976-MS.
    [20]
    宋茂林. 深水低温早强水泥浆体系的研究[J]. 化工管理,2020(8):110-111.

    SONG Maolin. Study on deep water low temperature and early strength cement slurry system[J]. Chemical Enterprise Management, 2020(8):110-111.
    [21]
    郭永宾,李中,刘和兴,等. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液,2019,36(4):500-505.

    GUO Yongbin, LI Zhong, LIU Hexing, et al. Development of a low temperature early strength cement slurry with low exothermic heat of hydration[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):500-505.
    [22]
    王清顺,陈宇,罗宇维,等. 基于分形理论的低热早强固井水泥浆体系研究[J]. 海洋工程装备与技术,2019,6(S1):334-337.

    WANG Qingshun, CHEN Yu, LUO Yuwei, et al. A low hydration heat and early strength cement slurry system based on fractal theory[J]. Ocean Engineering Equipment and Technology, 2019, 6(S1):334-337.
    [23]
    BU Y H, MA R, LIU H J, et al. Low hydration exothermic well cement system: the application of energy storage microspheres prepared by high-strength hollow microspheres carrying phase change materials[J]. Cement and Concrete Composites, 2021, 117:103907. doi: 10.1016/j.cemconcomp.2020.103907
    [24]
    吕斌,周琛洋,邱爱民,等. 防漏早强韧性水泥浆体系的室内研究[J]. 钻井液与完井液,2020,37(2):226-231.

    LYU Bin, ZHOU Chenyang, QIU Aimin, et al. Laboratory study on leak-proof early strength tough cement surry[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):226-231.
    [25]
    田野,符军放,宋维凯,等. 一种新型超深水低温早强剂[J]. 钻井液与完井液,2019,36(2):224-228.

    TIAN Ye, FU Junfang, SONG Weikai, et al. A new low temperature early strength agent for ultradeep water operation[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):224-228.
    [26]
    侯献海. 低温早强水泥体系的研究[D]. 青岛: 中国石油大学(华东), 2017.

    HOU Xianhai. Research of low temperature and early strength cement system[D]. Qingdao: China University of Petroleum(East China), 2017.
    [27]
    金惠玲,孙振平,庞敏,等. 铝酸盐水泥后期强度倒缩的原因及解决措施[J]. 混凝土世界,2020(10):46-52.

    JIN Huiling, SUN Zhenping, PANG Min, et al. The causes and solutions of late strength collapse of aluminate cement[J]. Building Decoration Materials World, 2020(10):46-52.
    [28]
    沈海超. 天然气水合物藏降压开采流固耦合数值模拟研究[D]. 青岛: 中国石油大学(华东), 2009.

    SHEN Haichao. Fluid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization[D]. Qingdao: China University of Petroleum(East China), 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(8)

    Article Metrics

    Article views (257) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return