Volume 41 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
SUN Zhenfeng, YANG Chao, LI Jie, et al.Development and performance evaluation of a high performance drilling fluid viscosifier[J]. Drilling Fluid & Completion Fluid,2024, 41(1):84-91 doi: 10.12358/j.issn.1001-5620.2024.01.009
Citation: SUN Zhenfeng, YANG Chao, LI Jie, et al.Development and performance evaluation of a high performance drilling fluid viscosifier[J]. Drilling Fluid & Completion Fluid,2024, 41(1):84-91 doi: 10.12358/j.issn.1001-5620.2024.01.009

Development and Performance Evaluation of a High Performance Drilling Fluid Viscosifier

doi: 10.12358/j.issn.1001-5620.2024.01.009
  • Received Date: 2023-09-19
  • Rev Recd Date: 2023-10-28
  • Publish Date: 2024-01-30
  • A high performance viscosifier DV-1 has been developed to solve the problem of degradation and losing effectiveness of drilling fluid viscosifiers in high temperature and high salinity conditions. VD-1 is synthesized through free radical copolymerization with monomers such as MAPS, MAC and NVP. The initiator of the polymerization reaction is AIBA. The optimal reaction condition, determined through orthogonal experiment method, is as this: reaction temperature is 50 ℃, concentration of the monomers is 40%, concentration of initiator is 0.4%, and reaction time is 4 h. The reaction product was characterized using FTIR, 1H-NMR and TG-DTA, and the viscosifying capacity, high temperature high salinity performance and the ling-term effectiveness of the synthesized product were evaluated. The evaluation experimental results show that 1% water solution of DV-1 has apparent viscosity of 44.7 mPa∙s. After aging at 180 ℃ for 16 h, the viscosity of the water solution is still maintained at 53.2% of its original viscosity. DV-1 is resistant to the contamination of salts. DV-1 also has good long-term effectiveness; after aging at 180 ℃ for 72 h and 120 h, the viscosity of the solution is still maintained at 50.5% and 40.7% of its original viscosity. DV-1 has EC50 of 30 200 mg∙L−1, meeting the standard of discharge in offshore area. The viscosifying mechanisms of DV-1 are studied by observing the spatial 3D morphology and by analyzing the Zeta potential of DV-1 in solution, it is concluded that DV-1 viscosifies in solution because the molecules of DV-1 have stable main chains and rigid side chains, the amphoteric ionic structure inhibits the continual curling of the side chains, thus effectively improving the salt resistant performance of DV-1 as a viscosifier.

     

  • loading
  • [1]
    蒋官澄,张峰,吴江,等. 低密度无固相海水钻井液在南海西部D气田的应用[J]. 钻井液与完井液,2018,35(5):61-66.

    JIANG Guancheng, ZHANG Feng, WU Jiang, et al. Application of low density solids-free seawater drilling fluid in D gas field in western south China sea[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):61-66.
    [2]
    邱春阳,周建民,张海青,等. 车古潜山油藏抗高温无固相钻井液技术[J]. 断块油气田,2020,27(3):390-393.

    QIU Chunyang, ZHOU Jianmin, ZHANG Haiqing, et al. Solid-free anti-temperature drilling fluid technology for buried-hill pool in Chegu block[J]. Fault-Block Oil and Gas Field, 2020, 27(3):390-393.
    [3]
    王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95-102. doi: 10.11911/syztjs.2019054

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3):95-102. doi: 10.11911/syztjs.2019054
    [4]
    李建军,王中义. 抗高温无固相钻井液技术[J]. 钻井液与完井液,2017,34(3):11-15.

    LI Jianjun, WANG Zhongyi. High temperature solid-free drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):11-15.
    [5]
    崔鹏,杨志淑,马双政. 一种抗高温环保型低增黏提切剂[J]. 钻井液与完井液,2022,39(4):441-445. doi: 10.12358/j.issn.1001-5620.2022.04.007

    CUI Peng, YANG Zhishu, MA Shuangzheng. Synthesis and properties of high temperature resistant environmental protection shear strength improving agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):441-445. doi: 10.12358/j.issn.1001-5620.2022.04.007
    [6]
    张黎明. 我国纤维素油田化学品的应用与发展前景[J]. 纤维素科学与技术,1996,4(2):1-12. doi: 10.16561/j.cnki.xws.1996.02.001

    ZHANG Liming. Application and development prospect of cellulose-based oilfield chemicals in China[J]. Journal of Cellulose Science and Technology, 1996, 4(2):1-12. doi: 10.16561/j.cnki.xws.1996.02.001
    [7]
    杨小华. 生物质改性钻井液处理剂研究进展[J]. 中外能源,2009,14(8):41-46.

    YANG Xiaohua. Progress in research of modified biomass drilling fluid additive[J]. Sino-global Energy, 2009, 14(8):41-46.
    [8]
    杨双春,王月超,潘一,等. 环保型黄原胶添加剂在石油开采中的研究应用进展[J]. 现代化工,2017,37(9):40-43,45.

    YANG Shuangchun, WANG Yuechao, PAN Yi, et al. Study and application of environmental friendly xanthan gum in petroleum exploitation[J]. Modern Chemical Industry, 2017, 37(9):40-43,45.
    [9]
    邱正松,毛惠,谢彬强,等. 抗高温钻井液增黏剂的研制及应用[J]. 石油学报,2015,36(1):106-113.

    QIU Zhengsong, MAO Hui, XIE Binqiang, et al. Synthesis and field application of high temperature resistant viscosifying agent for drilling fluid[J]. Acta Petrolei Sinica, 2015, 36(1):106-113.
    [10]
    董振华. 抗高温抗盐聚合物增黏剂的研制与性能评价[J]. 油田化学,2021,38(1):29-33. doi: 10.19346/j.cnki.1000-4092.2021.01.006

    DONG Zhenhua. Development and evaluation of temperature and salt resistant polymer viscosifier[J]. Oilfield Chemistry, 2021, 38(1):29-33. doi: 10.19346/j.cnki.1000-4092.2021.01.006
    [11]
    薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术,2016,44(6):67-73. doi: 10.11911/syztjs.201606011

    XUE Wenjia. Synthesis and properties of high temperature resistance and envi ronmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73. doi: 10.11911/syztjs.201606011
    [12]
    谢彬强,邱正松,郑力会. 水基钻井液用抗高温聚合物增黏剂的研制及作用机理[J]. 西安石油大学学报(自然科学版),2016,31(1):96-102.

    XIE Binqiang, QIU Zhengsong, ZHENG Lihui. Synthesis and effect mechanism of a high-temperature-resisting viscosifier SDKP for water-based drilling fluid[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(1):96-102.
    [13]
    张现斌,李欣,陈安亮,等. 钻井液用抗高温聚合物增黏剂的制备与性能评价[J]. 油田化学,2020,37(1):1-6,16. doi: 10.19346/j.cnki.1000-4092.2020.01.001

    ZHANG Xianbin, LI Xin, CHEN Anliang, et al. Preparation and performance evaluation of polymeric viscosifier with thermal resistance for water-based drilling fluid[J]. Oilfield Chemistry, 2020, 37(1):1-6,16. doi: 10.19346/j.cnki.1000-4092.2020.01.001
    [14]
    张洋. 抗高温反相乳液增黏剂DVZ-1的研究与应用[J]. 钻井液与完井液,2017,34(4):20-25.

    ZHANG Yang. Research and application of high temperature inverse emulsion viscosifier DVZ-1[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):20-25.
    [15]
    王中华. 超高温钻井液体系研究(Ⅰ)——抗高温钻井液处理剂设计思路[J]. 石油钻探技术,2009,37(3):1-7. doi: 10.3969/j.issn.1001-0890.2009.03.001

    WANG Zhonghua. Studies on ultra-high-temperature drilling fluid system (1): design ultra-high-temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 2009, 37(3):1-7. doi: 10.3969/j.issn.1001-0890.2009.03.001
    [16]
    顾宗濂, 谢思琴, 周德智, 等. GB/T 15441-1995. 水质 急性毒性的测定 发光细菌法[S]. 北京: 中国标准出版社, 1995.

    GU Zonglian, XIE Siqin, ZHOU Dezhi, et al. GB/T 15441-1995. Water quality-determination of the acute toxicity-luminescent bacteria test[S]. Beijing: Standards Press of China, 1995.
    [17]
    吴进孝, 黄韧, 郑琰晶, 等. GB 18420.1-2009. 海洋石油勘探开发污染物生物毒性 第1部分: 分级[S]. 北京: 中国标准出版, 2009.

    WU Jinxiao, HUANG Ren, ZHEN Yanjing, et al. GB 18420.1-2009. Biological toxicity for pollutants from marine petroleum exploration and exploitation-part 1: grading[S]. Beijing: Standards Press of China, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (41) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return