Citation: | CHEN Yufei, WU Tong, ZHANG Hui, et al.Study on solubilization behavior of molecular simulation cosolvent in siloxane SC-CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid,2023, 40(5):670-677 doi: 10.12358/j.issn.1001-5620.2023.05.018 |
[1] |
王海柱,李根生,贺振国,等. 超临界CO2岩石致裂机制分析[J]. 岩土力学,2018,39(10):3589-3596.
WANG Haizhu, LI Gensheng, HE Zhenguo, et al. Analysis of mechanisms of supercritical CO2 fracturing[J]. Rock and Soil Mechanics, 2018, 39(10):3589-3596.
|
[2] |
赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业,2021,41(8):121-142.
ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8):121-142.
|
[3] |
郑永,王海柱,李根生,等. 超临界CO2压裂迂曲裂缝内支撑剂运移特征[J]. 天然气工业,2022,42(3):71-80.
ZHENG Yong, WANG Haizhu, LI Gensheng, et al. Proppant transport characteristics in tortuous fractures induced by supercritical CO2 fracturing[J]. Natural Gas Industry, 2022, 42(3):71-80.
|
[4] |
HELLER J P, DANDGE D K, CARD R J, et al. Direct thickeners for mobility control of CO2 floods[J]. Society of Petroleum Engineers Journal, 1985, 25(5):679-686. doi: 10.2118/11789-PA
|
[5] |
KILIC S, MICHALIK S, WANG Y, et al. Phase behavior of oxygen-containing polymers in CO2[J]. Macromolecules, 2007, 40(4):1332-1341. doi: 10.1021/ma061422h
|
[6] |
XU J H, WLASCHIN A, ENICK R M. Thickening carbon dioxide with the fluoroacrylate-styrene copolymer[J]. SPE Journal, 2003, 8(2):85-91. doi: 10.2118/84949-PA
|
[7] |
DU M Y, SUN X, DAI C L, et al. Laboratory experiment on a toluene-polydimethyl silicone thickened supercritical carbon dioxide fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2018, 166:369-374. doi: 10.1016/j.petrol.2018.03.039
|
[8] |
ALZOBAIDI S, LEE J, JIRIES S, et al. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing[J]. Journal of Colloid and Interface Science, 2018, 526:253-267. doi: 10.1016/j.jcis.2018.04.056
|
[9] |
LIU B, WANG Y L, LIANG L. Preparation and performance of supercritical carbon dioxide thickener[J]. Polymers, 2020, 13(1):78. doi: 10.3390/polym13010078
|
[10] |
沈子齐,王彦玲,贾文峰,等. 新型低渗储层CO2增稠剂的静态悬砂性能及悬砂机理分析[J]. 应用化工,2022,51(1):68-72.
SHEN Ziqi, WANG Yanling, JIA Wenfeng, et al. Static suspended sand performance and mechanism analysis of new CO2 thickener for low permeability reservoir[J]. Applied Chemical Industry, 2022, 51(1):68-72.
|
[11] |
赵明伟,李阳,高明伟,等. 超临界二氧化碳溶解与增稠性能的综合性实验设计[J]. 实验技术与管理,2021,38(1):78-81. doi: 10.16791/j.cnki.sjg.2021.01.017
ZHAO Mingwei, LI Yang, GAO Mingwei, et al. Comprehensive experimental design of solubility and thickening properties of supercritical carbon dioxide[J]. Experimental Technology and Management, 2021, 38(1):78-81. doi: 10.16791/j.cnki.sjg.2021.01.017
|
[12] |
ZHANG J, XIAO B, ZHANG G X, et al. A New thickener for CO2 anhydrous fracturing fluid[J]. MATEC Web of Conferences, 2015, 31: 01002.
|
[13] |
SANG Q, ZHAO X Y, ABDELFATAH E, et al. Dispersibility of poly (vinyl acetate) modified silica nanoparticles in carbon dioxide with several cosolvents[J]. Langmuir, 2021, 37(2):655-665. doi: 10.1021/acs.langmuir.0c02522
|
[14] |
ZHAO M W, LI Y, GAO M W, et al. Formulation and performance evaluation of polymer-thickened supercritical CO2 fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2021, 201:108474. doi: 10.1016/j.petrol.2021.108474
|
[15] |
LI B F, LIU K, ZHU J, et al. Cosolvent Effect on the Solubility of Ammonium Benzoate in Supercritical Carbon Dioxide[J]. Journal of Chemical & Engineering Data, 2022, 67(3):689-694.
|
[16] |
HU D D, SUN S J, YUAN P Q, et al. Evaluation of CO2-philicity of poly (vinyl acetate) and poly (vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement[J]. The Journal of Physical Chemistry B, 2015, 119(7):3194-3204. doi: 10.1021/jp5130052
|
[17] |
GONG H J, ZHANG H, XU L, et al. Effects of cosolvent on dissolution behaviors of PVAc in supercriticalCO2: A molecular dynamics study[J]. Chemical Engineering Science, 2019, 206:22-30. doi: 10.1016/j.ces.2019.05.023
|
[18] |
陈睿,范宏. 超支化含苯基聚硅氧烷亲CO2特性及分子模拟[J]. 精细化工,2020,37(6):1282-1288.
CHEN Rui, FAN Hong. CO2-philic properties of hyperbranched phenyl-containing polysiloxanes with molecular simulation[J]. Fine Chemicals, 2020, 37(6):1282-1288.
|
[19] |
XUE P, SHI J, CAO X L, et al. Molecular dynamics simulation of thickening mechanism of supercritical CO2 thickener[J]. Chemical Physics Letters, 2018, 706:658-664. doi: 10.1016/j.cplett.2018.07.006
|
[20] |
O'BRIEN M J, PERRY R J, DOHERTY M D, et al. Anthraquinone siloxanes as thickening agents for supercritical CO2[J]. Energy & Fuels, 2016, 30(7):5990-5998.
|
[21] |
LEE J J, CUMMINGS S D, BECKMAN E J, et al. The solubility of low molecular weight Poly (Dimethyl siloxane) in dense CO2 and its use as a CO2-philic segment[J]. The Journal of Supercritical Fluids, 2017, 119:17-25. doi: 10.1016/j.supflu.2016.08.003
|
[22] |
LUO Hui, WANG Rui, FAN Weiyu, et al. Calculation of solubility parameters of supercritical CO2 by molecular dynamics simulation[J]. Acta Petrolei Sinica (Petroleum Processing Section)
|
[23] |
LIU B, WANG Y L, LIANG L, et al. Achieving solubility alteration with functionalized polydimethylsiloxane for improving the viscosity of supercritical CO2 fracturing fluids[J]. RSC Advances, 2021, 11(28):17197-17205. doi: 10.1039/D1RA02069B
|
[24] |
HU D D, SUN S J, YUAN P Q, et al. Exploration of CO2-philicity of poly (vinyl acetate-co-alkyl vinyl ether) through molecular modeling and dissolution behavior measurement[J]. The Journal of Physical Chemistry B, 2015, 119(38):12490-12501. doi: 10.1021/acs.jpcb.5b08393
|
[25] |
KONG W X, LV B H, JING G H, et al. How to enhance the regenerability of biphasic absorbents for CO2 capture: An efficient strategy by organic alcohols activator[J]. Chemical Engineering Journal, 2022, 429:132264. doi: 10.1016/j.cej.2021.132264
|
[26] |
ZHANG L, LIU C, LI Q B. Molecular simulations of competitive adsorption behavior between CH4-C2H6 in K-illite clay at supercritical conditions[J]. Fuel, 2020, 260:116358. doi: 10.1016/j.fuel.2019.116358
|
[27] |
WU H, ZHANG X F, XU D, et al. Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctional aminosilane[J]. Journal of Membrane Science, 2009, 337(1–2):61-69. doi: 10.1016/j.memsci.2009.03.043
|
[28] |
TUBMAN N M, LIBERATORE E, PIERLEONI C, et al. Molecular-atomic transition along the deuterium Hugoniot curve with coupled electron-ion Monte Carlo simulations[J]. Physical Review Letters, 2015, 115(4):045301. doi: 10.1103/PhysRevLett.115.045301
|
[29] |
CHANG K S, CHUNG Y C, YANG T H, et al. Free volume and alcohol transport properties of PDMS membranes: Insights of nano-structure and interfacial affinity from molecular modeling[J]. Journal of Membrane Science, 2012, 417/418:119-130.
|
[30] |
HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
|
[31] |
BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.
|
[32] |
KARASAWA N, GODDARD W A III. Acceleration of convergence for lattice sums[J]. The Journal of Physical Chemistry, 93(21), 7320-7327.
|
[33] |
OUGIYANAGI J, MEGURO Y, YOSHIDA Z, et al. Solvent effect on distribution ratio of Pd (II) in supercritical carbon dioxide extraction and solvent extraction using 2-methyl-8-quinolinol[J]. Talanta, 2003, 59(6):1189-1198. doi: 10.1016/S0039-9140(03)00031-6
|
[34] |
ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. 2nd ed. Oxford: Oxford University Press, 2017.
|
[35] |
BARA J E, CARLISLE T K, GABRIEL C J, et al. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48(6):2739-2751.
|
[36] |
WILLIAMS L L, RUBIN J B, EDWARDS H W. Calculation of hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region[J]. I ndustrial & Engineering Chemistry Research, 2004, 43(16):4967-4972.
|