Volume 40 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
QIN Zhongkui, DONG Zhiming, PU Jian, et al.Study and application of a fly ash-slag bonding reinforcement material[J]. Drilling Fluid & Completion Fluid,2023, 40(4):527-534 doi: 10.12358/j.issn.1001-5620.2023.04.016
Citation: QIN Zhongkui, DONG Zhiming, PU Jian, et al.Study and application of a fly ash-slag bonding reinforcement material[J]. Drilling Fluid & Completion Fluid,2023, 40(4):527-534 doi: 10.12358/j.issn.1001-5620.2023.04.016

Study and Application of a Fly Ash-slag Bonding Reinforcement Material

doi: 10.12358/j.issn.1001-5620.2023.04.016
  • Received Date: 2023-02-10
  • Rev Recd Date: 2023-03-05
  • Publish Date: 2023-07-30
  • When using a low-density cement slurry to cement a well, several problems need to be addressed, such as low early strength, deviation in compatibility with cement and high operation cost. To solve these problems, studies were conducted on fly ash and slag for their chemical composition, specific surface area and micromorphology using XRF, XRD and SEM etc. The study results have shown that the particle sizes of the fly ash and slag are distributed mainly in ranges of 0.36 – 89.34 μm and 1.56 – 39.91 μm, respectively, the specific surface area of the fly ash and the slag is 0.822 m2/g and 1.79 m2/g, respectively. The particles of these two materials have smooth surfaces and are closely packed. By analyzing the working mechanisms of the reinforcement materials, some organic and inorganic reinforcement materials were selected, taking the compressive strength of the flay ash cement slurry as the primary technical indicator. The optimum ratios and concentrations of these materials in the final reinforcement material were determined through laboratory studies as follows: 35%KZ+8%FMH+ 8%WK+3%NY+2%NS+6%CS. An alkali-activated fly ash-slag compound bonding reinforcement material was developed. The reaction process, micro structure and compressive strength of the alkali-activated fly ash-slag compound bonding reinforcement material in the QZ and FMH cement slurries were studied. Evaluation of the general performance of the bonding reinforcement material showed that when the concentrations of the bonding e reinforcement material in these two cement slurries are 10% and 9% respectively, the property of the cement slurries is able to meet the requirements of field operations. The bonding reinforcement material has been used in 7 well/times and the well cementing quality was 100% certified, achieving the expected goals.

     

  • loading
  • [1]
    王亚超,张耀君,徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报,2011,30(1):50-54.

    WANG Yachao, ZHANG Yaojun, XU Delong. Study on alkali-excited silicone-fly ash based mineral polymer[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1):50-54.
    [2]
    肖珊珊. 原材料理化性质对碱激发粉煤灰/矿渣复合体系的影响[D]. 广州:广州大学, 2019.

    XIAO Shanshan. Effect of physical and chemical properties of raw materials on alkali-activated fly ash/slag blended system [D]. Guangzhou:Guangzhou University, 2019.
    [3]
    肖珊珊,马玉玮,刘荣,等. 原材料理化性质对碱激发粉煤灰/矿渣早期性能的影响[J]. 混凝土,2019(5):89-95.

    XIAO Shanshan, MA Yuwei, LIU Rong, et al. Effect of raw materials on the early age properties of alkali-activated fly ash/slag[J]. Concrete, 2019(5):89-95.
    [4]
    张云华,蒋卓颖,李雨威,等. 粉煤灰低密度水泥浆在塔河油田堵漏中的应用[J]. 石油与天然气化工,2018,47(1):79-82.

    ZHANG Yunhua, JIANG Zhuoying, LI Yuwei, et al. Utilization of fly ash low density cement slurry for plugging in Tahe oilfield[J]. Chemical Industry of Oil & Gas, 2018, 47(1):79-82.
    [5]
    刘璐,李明,郭小阳. 一种新型低密度矿渣固井液[J]. 钻井液与完井液,2016,33(6):68-72.

    LIU Lu, LI Ming, GUO Xiaoyang. A new low density slag cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):68-72.
    [6]
    宫英杰,李洪俊,张恒,等. 低密度水泥浆充填增强材料粒径分布设计方法[J]. 石油天然气学报,2010,32(1):288-290.

    GONG Yingjie, LI Hongjun, ZHANG Heng, et al. Design method of particle size distribution of low density cement slurry filling reinforcement material[J]. Journal of Oil and Gas Technology, 2010, 32(1):288-290.
    [7]
    杨立荣,王春梅,封孝信,等. 粉煤灰/矿渣基地聚合物的制备及固化机理研究[J]. 武汉理工大学学报,2009,31(7):115-119.

    YANG Lirong, WANG Chunmei, FENG Xiaoxin, et al. Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J]. Journal of Wuhan University of Technology, 2009, 31(7):115-119.
    [8]
    张弛,陈小旭,李长坤,等. 抗高温硅酸盐水泥浆体系研究[J]. 钻井液与完井液,2017,34(5):62-66.

    ZHANG Chi, CHEN Xiaoxu, LI Changkun, et al. Study of high temperature silicate cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):62-66.
    [9]
    孙晓杰,张维滨,李建华,等. 渤海海域低密度早强水泥浆的室内研究[J]. 钻井液与完井液,2014,31(3):72-74.

    SUN Xiaojie, ZHANG Weibin, LI Jianhua, et al. Laboratory study on low density early strength cement mud in Bohai Sea[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):72-74.
    [10]
    于永金,刘硕琼,靳建洲,等. 低密度高强度水泥浆体系研究[J]. 西部探矿工程,2012,24(7):33-35.

    YU Yongjin, LIU Shuoqiong, JIN Jianzhou, et al. Research of cement slurry system with low density and high strength[J]. West-China Exploration Engineering, 2012, 24(7):33-35.
    [11]
    齐志刚. 低温低水化热固井水泥浆体系研究[D]. 青岛: 中国石油大学, 2009.

    QI Zhigang. Research on a low temperature and low hydration heat cement slurry system[D]. Qingdao: China University of Petroleum (East China), 2009.
    [12]
    刘学勇,杨林虎. 橡胶颗粒对水泥净浆水化产物影响的XRD分析[J]. 公路,2011(4):164-168.

    LIU Xueyong, YANG Linhu. XRD analysis of effect of crumb rubber on hydration products of cement paste[J]. Highway, 2011(4):164-168.
    [13]
    张博建,彭志刚,冯茜,等. 含有改性CaSO4晶须的固井水泥石的力学性能[J]. 硅酸盐学报,2021,49(10):2286-2297.

    ZHANG Bojian, PENG Zhigang, FENG Qian, et al. Mechanical properties of cement stone with modified CaSO4 whisker[J]. Journal of the Chinese Ceramic Society, 2021, 49(10):2286-2297.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (372) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return