Volume 40 Issue 3
May  2023
Turn off MathJax
Article Contents
DANG Donghong, LIU Ningze, WANG Dan, et al.Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013
Citation: DANG Donghong, LIU Ningze, WANG Dan, et al.Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013

Control Measures of Cement High-temperature Deterioration Performance under Dry-hot Rock Conditions

doi: 10.12358/j.issn.1001-5620.2023.03.013
  • Received Date: 2023-01-16
  • Rev Recd Date: 2023-02-20
  • Available Online: 2023-07-21
  • Publish Date: 2023-05-30
  • When cementing geothermal wells in dry hot rocks, the bottom temperature is often as high as above 200 ℃. Aiming at the problem of strength decline of cement paste caused by high temperature at the bottom of the well under dry-hot rock conditions, this paper directly starts from the chemical composition of cement, and improves this problem by adjusting the ratio of C3S and C2S, and compounding low-heat portland cement with lower calcium-silicon ratio under the synergistic effect of silicon powder. Firstly, the mechanical properties of multiphase C3S-C2S mineral system are the best when C3S∶C2S=1.0. Combined with XRD, TGA and SEM tests, it is known that the reduction of calcium-silicon ratio has a positive effect on the formation of favorable phase xonotlite. Low-grade cement with lower calcium-silicon ratio is introduced to strengthen G-grade cement. The results show that the compressive strength of "30% G-grade +70% low-grade cement" composite cement system (the ratio of C3S to C2S is 1.07) is 27.34 MPa under the action of 40% silicon powder. The high temperature resistance of cement paste can be greatly improved from the cement itself by properly adjusting the mineral composition in cement to make the ratio of C3S to C2S about 1.0.

     

  • loading
  • [1]
    柴瑞瑞,李纲. 可再生清洁能源与传统能源清洁利用: 发电企业能源结构转型的演化博弈模型[J]. 系统工程理论与实践,2022,42(1):184-197.

    CHAI Ruirui, LI Gang. Renewable clean energy and clean utilization of traditional energy: An evolutionary game model of energy structure transformation of power enterprises[J]. Systems Engineering-Theory & Practice, 2022, 42(1):184-197.
    [2]
    崔荣国,郭娟,程立海,等. 全球清洁能源发展现状与趋势分析[J]. 地球学报,2021,42(2):179-186.

    CUI Rongguo, GUO Juan, CHENG Lihai, et al. Status and trends analysis of global clean energies[J]. Acta Geoscientica Sinica, 2021, 42(2):179-186.
    [3]
    王沣浩,蔡皖龙,王铭,等. 地热能供热技术研究现状及展望[J]. 制冷学报,2021,42(1):14-22.

    WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1):14-22.
    [4]
    黄璜,刘然,李茜,等. 地热能多级利用技术综述[J]. 热力发电,2021,50(9):1-10.

    HUANG Huang, LIU Ran, LI Qian, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50(9):1-10.
    [5]
    HUANG W, CAO W, JIANG F. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162:44-630.
    [6]
    MA Z, PENG L, LI J, et al. The situation analysis of hot dry rock geothermal energy development in China-based on structural equation modeling[J]. Heliyon, 2022, 8(12):e12123.
    [7]
    ZHANG Wenyang, MA Yong, YANG Ruoyu, et al. Effects of ethylene diamine tetraacetic acid and calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387.
    [8]
    YIN Weitao, ZHAO Yangsheng, FENG Zijun. Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock[J]. Renewable Energy, 2019(139):71-79.
    [9]
    杨雨,徐拴海,张浩,等. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液,2021,38(1):93-101.

    YANG Yu, XU Shuanhai, ZHANG Hao, et al. Preparation properties and structure of high heat conduction and low density cementing materials for geothermal wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):93-101.
    [10]
    王成文,陈新,周伟,等. 纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理[J]. 天然气工业,2019,39(3):72-79.

    WANG Chengwen, CHEN Xin, ZHOU Wei, et al. Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well cement under high temperature[J]. Natural Gas Industry, 2019, 39(3):72-79.
    [11]
    焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):20-512.

    JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):20-512.
    [12]
    桑来玉. 硅粉对水泥石强度发展影响规律[J]. 钻井液与完井液,2004,21(6):3-41, 49.

    SANG Laiyu. Law of silica powder influence on cement stone strength development[J]. Driuing Fluid & Completion Fluld, 2004, 21(6):3-41, 49.
    [13]
    徐永辉. 深井水泥水化机理研究[D]. 大庆: 东北石油大学, 2007.

    XU Yonghui. A study of cement hydration mechanism in deep wells[D]. Daqing: Northeast Petroleum University, 2007.
    [14]
    姚晓,葛荘,汪晓静,等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23.

    YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23.
    [15]
    孙浩. 稠油火驱水泥石长期密封性能实验研究[D]. 成都: 西南石油大学, 2018.

    SUN Hao. Experimental study on long-term sealing performance of cement stone under in-situ combustion[D]. Chengdu: Southwest Petroleum University, 2018.
    [16]
    赵昆鹏,王涛,郭春,等. 高温下赤泥与硅粉协同强化固井水泥石力学性能[J]. 中国粉体技术,2023,29(2):74-80.

    ZHAO Kunpeng, WANG Tao, GUO Chun, et al. Mechanical properties of cement stone reinforced by red mud and silicon fume at high temperature[J]. China Powder Science and Technology, 2023, 29(2):74-80.
    [17]
    WEI T, CHENG X, GU T, et al. The change and influence mechanism of the mechanical properties of tricalcium silicate hardening at high temperature[J]. Construction and Building Materials, 2021, 308:125065.
    [18]
    WEI T, CHENG X, LIU H, et al. Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature[J]. Construction and Building Materials, 2022, 316:125884.
    [19]
    李华,吴笑梅,樊粤明. 烧成温度对低热水泥性能的影响及其机理研究[J]. 水泥,2007(7):22-5.

    LI Hua, WU Xiaomei, FAN Yueming. Effect of sintering temperature on performance of law-heat portland cement and its mechanism[J]. Cement, 2007(7):22-5.
    [20]
    CUESTA A, AYUELA A, ARANDA MAG. Belite cements and their activation[J]. Cement Concrete Research, 2021(140):106319.
    [21]
    汪智勇,王敏,文寨军,等. 硅酸二钙及以其为主要矿物的低钙水泥的研究进展[J]. 材料导报,2016,30(1):8-73.

    WANG Zhiyong, WANG Min, WEN Zhaijun, et al. Progress on study of dicalcium silicate and low calcium cement with dicalcium silicate as a main mineral composition[J]. Materials Review, 2016, 30(1):8-73.
    [22]
    STANĚK T, SULOVSKÝ P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015(68):203-210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (695) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return