Citation: | SONG Hanxuan, ZHENG Lianjie, ZHANG Shiling, et al.Mechanisms casing contamination by drilling fluids in ultra-deep well drilling[J]. Drilling Fluid & Completion Fluid,2023, 40(3):340-348 doi: 10.12358/j.issn.1001-5620.2023.03.009 |
[1] |
YANG P, LIU K, LIU J, et al. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole low uplift, Tarim basin, west China[J]. Marine and Petroleum Geology, 2021, 128:105063. doi: 10.1016/j.marpetgeo.2021.105063
|
[2] |
QIAO Z, ZHANG S, SHEN A, et al. Features and origins of massive dolomite of lower Ordovician Penglaiba formation in the northwest Tarim basin: Evidence from petrography and geochemistry[J]. Petroleum Science, 2021, 18(5):1323-1341. doi: 10.1016/j.petsci.2021.03.001
|
[3] |
ZHU G, MILKOV A V, LI J, et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China[J]. Journal of Petroleum Science and Engineering, 2020
|
[4] |
张雁, 屈沅治, 张志磊, 等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学, 2022: 1-13.
ZHANG Yan, QU Yuanzhi, ZHANG Zhilei, et al. Research status and development direction of ultra-high temperature water-based drilling fluid technology[J]. Oilfield Chemistry, 2022: 1-13.
|
[5] |
盛勇,叶艳,朱金智,等. 内核纳米乳液用于塔西南地区钻井液的优化[J]. 钻井液与完井液,2021,38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007
SHENG Yong, YE Yan, ZHU Jinzhi, et al. Optimization of drilling fluid using kernel nanoemulsion in southwest Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007
|
[6] |
邵国彪,武宁宁,王凯,等. 废弃油基钻井液国内外处置技术研究[J]. 中国石油和化工标准与质量,2021,41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091
SHAO Guobiao, WU Ningning, WANG Kai, et al. Research on disposal technology of used oil-base drilling fluid at home and abroad[J]. China Petroleum and Chemical Standards and Quality, 2021, 41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091
|
[7] |
邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.
QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670.
|
[8] |
LIU J, ZHANG X, ZHANG W, et al. Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development[J]. Petroleum Science, 2022, 19(2):916-926. doi: 10.1016/j.petsci.2021.09.045
|
[9] |
宋瀚轩, 叶艳, 周志世, 等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液, 2022: 1-11.
SONG Hanxuan, YE Yan, ZHOU Zhishi, et al. Preparation of paraffin microemulsion and its application in water-based drilling fluid [J]. Drilling Fluid & Completion Fluid, 2022: 1-11.
|
[10] |
HERMOSO J, MARTINEZ-BOZA F, GALLEGOS C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure[J]. Applied Clay Science, 2014, 87:14-21. doi: 10.1016/j.clay.2013.10.011
|
[11] |
杨力,唐永帆,刘均,等. 龙会2井井下油管化学解堵工艺技术应用[J]. 石油与天然气化工,2006(2):137-139.
YANG Li, TANG Yongfan, LIU Jun, et al. Application of chemical plugging technology for downhole tubing in Longhui 2 Well[J]. Chemical Industry of Oil & Gas, 2006(2):137-139.
|
[12] |
杨丽丽,王爱佳,蒋官澄,等. RAFT聚合制备嵌段聚合物结构对降滤失剂性能的影响[J]. 钻井液与完井液,2022,39(1):23-28.
YANG Lili, WANG Aijia, JIANG Guancheng, et al. Effect of RAFT polymerization of block polymer structure on properties of fluid loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):23-28.
|
[13] |
李佳琦,杨海彤,葛兵,等. 一种耐高温交联淀粉钻井液降滤失剂的制备与评价[J]. 特种油气藏,2022,29(4):164-168.
LI Jiaqi, YANG Haitong, GE Bing, et al. Preparation and evaluation of a high temperature resistant fluid loss reducer for starch drilling fluid[J]. Special Oil and Gas Reservoirs, 2022, 29(4):164-168.
|
[14] |
赵向阳,杨顺辉,郑德帅. 水基钻井液高温高压密度预测新模型[J]. 科学技术与工程,2013,13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035
ZHAO Xiangyang, YANG Shunhui, ZHENG Desai. A new high temperature and high pressure density prediction model for water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035
|
[15] |
龙怀远,陈武,刘罡,等. 高温高压油基钻井液乳化稳定性评价装置与方法[J]. 钻井液与完井液,2021,38(6):738-742.
LONG Huaiyuan, CHEN Wu, LIU Gang, et al. Evaluation device and method for emulsification stability of high temperature and high pressure oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):738-742.
|
[16] |
史佳欢. 加重剂类型对油基钻井液性能的影响评价分析[J]. 西部探矿工程,2022,34(9):72-74.
SHI Jiahuan. Evaluation and analysis of influence of weighting agent types on properties of oil-base drilling fluid[J]. Western Exploration Engineering, 2022, 34(9):72-74.
|
[17] |
杜征鸿,沈建文,睢圣,等. 耐高温核壳型油基钻井液纳米封堵剂的制备与性能评价[J]. 油田化学,2022,39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001
DU Zhenghong, SHEN Jianwen, SUI Sheng, et al. Preparation and performance evaluation of high temperature resistant core-shell type oil base drilling fluid nano plugging agent[J]. Oilfield Chemistry, 2022, 39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001
|
[18] |
BAO Q, HUANG L, XIU J, et al. Study on the thermal washing of oily sludge used by rhamnolipid/sophorolipid binary mixed bio-surfactant systems[J]. Ecotoxicology and Environmental Safety, 2022, 240:113696. doi: 10.1016/j.ecoenv.2022.113696
|
[19] |
YE Y, LI J, ZHANG Q, et al. Nanoemulsion for oil-contaminated oil-based drill cuttings removel in lab[J]. International Journal of Hydrogen Energy, 2017, 42(29):18734-18740. doi: 10.1016/j.ijhydene.2017.05.011
|
[20] |
ZHANG W, DUAN T, LI M, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2):367-380. doi: 10.1016/S1876-3804(21)60029-0
|
[21] |
王翀,谢飞燕,刘爱萍,等. 油基钻井液用冲洗液BCS-020L研制及应用[J]. 石油钻采工艺,2013,35(6):36-39. doi: 10.13639/j.odpt.2013.06.027
WANG Chong, XIE Feiyan, LIU Aiping, et al. Development and application of BCS-020L washing fluid for oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2013, 35(6):36-39. doi: 10.13639/j.odpt.2013.06.027
|