Volume 40 Issue 3
May  2023
Turn off MathJax
Article Contents
LUO Chunzhi, ZHANG Chujun, WANG Yidi, et al.Synthesis and application of polyether fatty acid rheology modifier for oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(3):303-312 doi: 10.12358/j.issn.1001-5620.2023.03.004
Citation: LUO Chunzhi, ZHANG Chujun, WANG Yidi, et al.Synthesis and application of polyether fatty acid rheology modifier for oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(3):303-312 doi: 10.12358/j.issn.1001-5620.2023.03.004

Synthesis and Application of Polyether Fatty Acid Rheology Modifier for Oil-based Drilling Fluids

doi: 10.12358/j.issn.1001-5620.2023.03.004
  • Received Date: 2022-12-20
  • Rev Recd Date: 2023-02-23
  • Available Online: 2023-07-21
  • Publish Date: 2023-05-30
  • Oil-based drilling fluids have low gel strengths and pipe sticking by the settled drilled cuttings is easy to be encountered. A polyether fatty acid gelling agent LQZ has been developed to deal with this problem. The molecular structure, thermal stability, gelling property and emulsion stability of the synthesized LQZ were analyzed using IR spectroscopy, thermogravimetric curve, gel strength measurement and emulsion stability test. The effects of the base oil for formulating the mud, oil/water ratio, density and temperature on the gelling performance of the LQZ were investigated. It was found that in the LQZ molecules there are polar groups such as hydroxyl, amide and ether bond which can form network structures. The network structures render the LQZ a fast weak gelling characteristics. At 300 ℃, the LQZ has no obvious thermal decomposition. The LQZ is beneficial to the emulsion stability of the oil-based muds at a concentration of less than 0.85%. The LQZ can be used in various nonaqueous drilling fluids formulated with white oil, diesel oil or synthetic fluids, with white oil-based drilling fluids being the best environment for the LQZ. LQZ in an oil-based mud with oil/water ratio of 8∶2 and density of 2.1 g/cm3 has the optimum gelling capacity at 190 ℃, the yield point, the low shear rate, φ6 and φ3 reading and the gel strengths are all doubled. Compared with the similar products produced abroad, LQZ has the advantages of increasing gel strengths of a mud, without simultaneously increasing the plastic viscosity of the mud. In field operation, 1% LQZ in a white oil-based drilling fluid and in a diesel oil-based drilling fluid increased the gel strengths of the muds by more than twice, and the plastic viscosity was only slightly increased. The LQZ can be used to improve the suspending capacity of an oil-based drilling fluid.

     

  • loading
  • [1]
    王晓军,李俊杞,孙云超,等. 强抑制水基钻井液在连续管侧钻井中的应用[J]. 石油钻采工艺,2018,40(1):33-39. doi: 10.13639/j.odpt.2018.01.006

    WANG Xiaojun, LI Junqi, SUN Yunchao, et al. Application of strong-inhibition water based drilling fluid to side tracking of coiled tubing[J]. Oil Drilling & Production Technology, 2018, 40(1):33-39. doi: 10.13639/j.odpt.2018.01.006
    [2]
    黄贤斌. 抗高温高性能无土相钻井液技术研究[D]. 北京: 中国石油大学(北京), 2019: 10-12.

    HUANG Xianbin. High-temperature high-performance organoclay-free oil based drilling fluid technology research[D]. Beijing: China University of Petroleum (Beijing), 2019: 10-12.
    [3]
    彭浩. 油基合成基钻井液用提切剂的研制及性能评价[D]. 北京: 中国石油大学(北京), 2020: 1-3.

    PENG Hao. Development and performance evaluation of cutting agent for oil-based and synthetic-based fluids[D]. Beijing: China University of Petroleum (Beijing), 2020: 1-3.
    [4]
    张桓,罗春芝,张世录,等. 抗温抗污染油基钻井液乳化剂的研制及在阳101区块的应用[J]. 钻采工艺,2022,45(6):146-151.

    ZHANG Huan, LUO Chunzhi, ZHANG Shilu, et al. Development of anti-temperature and anti-pollution emulsifier for oil-based drilling fluid and its application in Yang101 Block[J]. Drilling & Production Technology, 2022, 45(6):146-151.
    [5]
    蒋官澄,贺垠博,黄贤斌,等. 基于超分子技术的高密度无黏土油基钻井液体系[J]. 石油勘探与发,2016,43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5

    JIANG Guancheng, HE Yinbo, HUANG Xianbin, et al. A high-density organoclay-free oil base drilling fluid based on supramolecular chemistry[J]. Petroleum Exploration and Development, 2016, 43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5
    [6]
    JAIN R, MAHTO V. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water-based drilling fluid system[J]. Journal of Petroleum Science and Engineering, 2015, 133:612-621. doi: 10.1016/j.petrol.2015.07.009
    [7]
    黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.

    HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405.
    [8]
    孙金声,黄贤斌,蒋官澄,等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718. doi: 10.11698/PED.2018.04.17

    SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718. doi: 10.11698/PED.2018.04.17
    [9]
    倪晓骁,史赫,程荣超,等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.

    NI Xiaoxiao, SHE He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138.
    [10]
    杨斌. 油基钻井液稳黏提切剂的研制及应用[J]. 钻采工艺,2019,42(1):80-82. doi: 10.3969/J.ISSN.1006-768X.2019.01.24

    YANG Bin. Development of rheology modifier for oil based drilling fluid[J]. Drilling & Production Technology, 2019, 42(1):80-82. doi: 10.3969/J.ISSN.1006-768X.2019.01.24
    [11]
    VASCONCELOS A N, PAIXÃO M V G, DO NASCIMENTO MARQUES N, et al. Dimer fatty acid and fatty amide effects on the properties of synthetic-based drilling fluids[J]. Journal of Molecular Liquids, 2022, 359:119270. doi: 10.1016/j.molliq.2022.119270
    [12]
    崔茂荣,马勇. 钻井液触变性评价方法的合理性探索[J]. 钻井液与完井液,2006,23(1):24-26. doi: 10.3969/j.issn.1001-5620.2006.01.006

    CUI Maorong, MA Yong. Rationality of evaluation method for thixotropy of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2006, 23(1):24-26. doi: 10.3969/j.issn.1001-5620.2006.01.006
    [13]
    鄢捷年. 钻井液工艺学(修订版)[M]. 东营: 中国石油大学出版社, 2012: 66-68.

    YAN Jienian. Drilling fluid technology (revision)[M]. Dongying: China University of Petroleum Press, 2012: 66-68.
    [14]
    赵濉,郭朝阳,刘苗,等. 甜菜碱与油酸混合吸附膜的界面扩张流变性质[J]. 天津工业大学学报,2020,39(5):50-55. doi: 10.3969/j.issn.1671-024x.2020.05.008

    ZHAO Sui, GUO Zhaoyang, LIU Miao, et al. Interfacial dilational rheological properties of mixed adsorption film formed by betaine and oleic acid[J]. Journal of Tianjin Polytechnic University, 2020, 39(5):50-55. doi: 10.3969/j.issn.1671-024x.2020.05.008
    [15]
    曹绪龙, 张路, 祝仰文, 等. 表面活性剂溶液的界面扩张流变学[M]. 北京: 科学出版社, 2021, 1-4.

    CAO Xulong, ZHANG Lu, ZHU Yangwen, et al. Inerfacial dilational rheology of surfactant solution[M]. Beijing: Science Press, 2021, 1-4.
    [16]
    曹绪龙,李阳,蒋生祥,等. 驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J]. 石油大学学报(自然科学版),2005,29(2):70-72.

    CAO Xulong, LI Yang, JIANG Shengxiang, et al. Dilational rheological properties of polyacrylamide solutions at interfaces[J]. Journal of the University of Petroleum (Natural Science Edition), 2005, 29(2):70-72.
    [17]
    江琴,陆紫灵,张磊,等. 支链烷基苯磺酸钠溶液界面扩张流变性质研究[J]. 武汉理工大学学报,2022,44(2):15-20. doi: 10.3963/j.issn.1671-4431.2022.02.003

    JIANG Qin, LU Ziling, ZHANG Lie, et al. study on interfacial dilational rheological properties of sodium branched-alkyl benzene sulfonate solutions[J]. Journal of Wuhan University of Technology, 2022, 44(2):15-20. doi: 10.3963/j.issn.1671-4431.2022.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (786) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return