Volume 40 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
SUN Chenhao, HUANG Sha, DONG Sailiang, et al.A new reservoir wettability characterization method for fracturing fluid performance[J]. Drilling Fluid & Completion Fluid,2023, 40(2):251-258 doi: 10.12358/j.issn.1001-5620.2023.02.014
Citation: SUN Chenhao, HUANG Sha, DONG Sailiang, et al.A new reservoir wettability characterization method for fracturing fluid performance[J]. Drilling Fluid & Completion Fluid,2023, 40(2):251-258 doi: 10.12358/j.issn.1001-5620.2023.02.014

A New Reservoir Wettability Characterization Method for Fracturing Fluid Performance

doi: 10.12358/j.issn.1001-5620.2023.02.014
  • Received Date: 2022-12-30
  • Accepted Date: 2023-02-01
  • Rev Recd Date: 2023-02-15
  • Publish Date: 2023-03-30
  • Unconventional reservoirs have characteristics of complex pore geometry, high heterogeneity and low permeability. The wetting behavior between the fluid and solid is the dominant factor that controlling the static and dynamic fluid displacements, which is of great crucial for evaluating the fracturing fluid performance, enhancing the oil recovery during the fracturing fluid imbibition, and optimizing the fracturing fluid formulation. In this paper, we propose a new in-situ wettability characterization method based on the Gauss-Bonnet theorem and 3D micro-computed tomography experiments. In addition, we systematically analyze the effect of complex wetting condition on fracturing fluid performance during the imbibition process of fracturing fluids by applying digital rock technology and lattice-Boltzmann method simulations. It is elucidated that the wettability characterization method by the topological principles is more accurate than in-situ microscopic contact angles, of which accuracy is higher than 95%. It is also capable of characterizing the wettability that is influenced by different wetting characteristics. Simultaneously, the tight oil recovery in the homogeneous water-wet reservoir is 33.8% higher than that of mixed-wet reservoirs, which leads to a better performance of fracturing fluid. The initial condition of reservoir is commonly mixed-wet. Therefore, the formulation of fracturing fluid needs to be optimized to reduce the rock wettability and enhance tight oil recovery.

     

  • loading
  • [1]
    DE GENNES P G. Wetting: Statics and dynamics[J]. Reviews of Modern Physics, 1985, 57(3):827-863. doi: 10.1103/RevModPhys.57.827
    [2]
    BONN D, EGGERS J, INDEKEU J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2):739-805. doi: 10.1103/RevModPhys.81.739
    [3]
    RABBANI H S, ZHAO B Z, JUANES R, et al. Pore geometry control of apparent wetting in porous media[J]. Scientific Reports, 2018, 8:15729. doi: 10.1038/s41598-018-34146-8
    [4]
    刘秀婵,陈西泮,刘伟,等. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏,2019,31(5):114-120.

    LIU Xiuchan, CHEN Xipan, LIU Wei, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application[J]. Lithologic Reservoirs, 2019, 31(5):114-120.
    [5]
    李小兵,刘莹. 微观结构表面接触角模型及其润湿性[J]. 材料导报,2009,23(24):101-103. doi: 10.3321/j.issn:1005-023X.2009.24.029

    LI Xiaobing, LIU Ying. Contact angle model and wettability on the surfaces with microstructures[J]. Materials Reports, 2009, 23(24):101-103. doi: 10.3321/j.issn:1005-023X.2009.24.029
    [6]
    朱定一,张远超,戴品强,等. 润湿性表征体系及液固界面张力计算的新方法(II)[J]. 科学技术与工程,2007,7(13):3063-3069. doi: 10.3969/j.issn.1671-1815.2007.13.005

    ZHU Dingyi, ZHANG Yuanchao, DAI Pinqiang, et al. Novel characterization of wetting propertiesand the calculationof liquid-solid interface tension (Ⅱ)[J]. Science Technology and Engineering, 2007, 7(13):3063-3069. doi: 10.3969/j.issn.1671-1815.2007.13.005
    [7]
    林伯韬,史璨,于光哲,等. 风城陆相稠油油砂亲水性及润湿性机理研究[J]. 石油科学通报,2017,2(3):355-363.

    LIN Botao, SHI Can, YU Guangzhe, et al. Wettability and hydrophilicity of Fengcheng terrestrial oil sand[J]. Petroleum Science Bulletin, 2017, 2(3):355-363.
    [8]
    王飞,阮颖琪,陈巧韵,等. 考虑压裂液渗吸换油效应的压裂焖井压降模型[J]. 石油勘探与开发,2021,48(6):1250-1257. doi: 10.11698/PED.2021.06.17

    WANG Fei, RUAN Yingqi, CHEN Qiaoyun, et al. A pressure drop model of post-fracturing shut-in considering the effect of fracturing-fluid imbibition and oil replacement[J]. Petroleum Exploration and Development, 2021, 48(6):1250-1257. doi: 10.11698/PED.2021.06.17
    [9]
    SUN C, MCCLURE J E, MOSTAGHIMI P, et al. Probing effective wetting in subsurface systems[J]. Geophysical Research Letters, 2020, 47(5):e2019GL086151.
    [10]
    管自生,张强. 激光刻蚀硅表面的形貌及其对浸润性的影响[J]. 化学学报,2005,63(10):880-884. doi: 10.3321/j.issn:0567-7351.2005.10.002

    GUAN Zisheng, ZHANG Qiang. Effect of topography on wettability of pulse laser-ablated Si surface[J]. Acta Chimica Sinca, 2005, 63(10):880-884. doi: 10.3321/j.issn:0567-7351.2005.10.002
    [11]
    杨永飞,姚军,VAN DIJKE M I J. 油藏岩石润湿性对气驱剩余油微观分布的影响机制[J]. 石油学报,2010,31(3):467-470. doi: 10.7623/syxb201003021

    YANG Yongfei, YAO Jun, VAN DIJKE M I J. Effect of reservoir rock wettability on microcosmic distribution of residual oil after gas displacement[J]. Acta Petrolei Sinica, 2010, 31(3):467-470. doi: 10.7623/syxb201003021
    [12]
    高党鸽,李鹏宇,苏莹,等. 特殊润湿性油水分离材料的研究进展[J]. 精细化工,2021,38(9):1746-1756.

    GAO Dangge, LI Pengyu, SU Ying, et al. Research progress of oil water separation materials with special wettability[J]. Fine Chemicals, 2021, 38(9):1746-1756.
    [13]
    YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. doi: 10.1098/rstl.1805.0005
    [14]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
    [15]
    CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551. doi: 10.1039/tf9444000546
    [16]
    ANDREW M, BIJELJIC B, BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using x-ray microtomography[J]. Advances in Water Resources, 2014, 68:24-31. doi: 10.1016/j.advwatres.2014.02.014
    [17]
    ALRATROUT A, RAEINI A Q, BIJELJIC B, et al. Automatic measurement of contact angle in pore-space images[J]. Advances in Water Resources, 2017, 109:158-169. doi: 10.1016/j.advwatres.2017.07.018
    [18]
    SCANZIANI A, SINGH K, BLUNT M J, et al. Automatic method for estimation of in situ effective contact angle from x-ray micro tomography images of two-phase flow in porous media[J]. Journal of Colloid and Interface Science, 2017, 496:51-59. doi: 10.1016/j.jcis.2017.02.005
    [19]
    DALTON L E, TAPRIYAL D, CRANDALL D, et al. Contact angle measurements using sessile drop and micro-ct data from six sandstones[J]. Transport in Porous Media, 2020, 133(1):71-83. doi: 10.1007/s11242-020-01415-y
    [20]
    JOHNSON JR R E, DETTRE R H. Contact angle hysteresis. III. Study of an idealized heterogeneous surface[J]. The Journal of Physical Chemistry, 1964, 68(7):1744-1750. doi: 10.1021/j100789a012
    [21]
    MORROW N R. Physics and thermodynamics of capillary action in porous media[J]. Industrial & Engineering Chemistry, 1970, 62(6):32-56.
    [22]
    AMOTT E. Observations relating to the wettability of porous rock[J]. Transactions of the AIME, 1959, 216(1):156-162. doi: 10.2118/1167-G
    [23]
    TIAB D, DONALDSON E C. Petrophysics: Theory and practice of measuring reservoir rock and fluid transport properties [M]. Houston: Gulf Professional Publishing, 2015.
    [24]
    DONALDSON E C, THOMAS R D, LORENZ P B. Wettability determination and its effect on recovery efficiency[J]. SPE Journal, 1969, 9(1):13-20.
    [25]
    BLUNT M J, LIN Q, AKAI T, et al. A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging[J]. Journal of Colloid and Interface Science, 2019, 552:59-65. doi: 10.1016/j.jcis.2019.05.026
    [26]
    MASCINI A, CNUDDE V, BULTREYS T. Event-based contact angle measurements inside porous media using time-resolved micro-computed tomography[J]. Journal of Colloid and Interface Science, 2020, 572:354-363. doi: 10.1016/j.jcis.2020.03.099
    [27]
    ARMSTRONG R T, SUN C, MOSTAGHIMI P, et al. Multiscale characterization of wettability in porous media[J]. Transport in Porous Media, 2021, 140(1):215-240. doi: 10.1007/s11242-021-01615-0
    [28]
    SUN C, MCCLURE J, BERG S, et al. Universal description of wetting on multiscale surfaces using integral geometry[J]. Journal of Colloid and Interface Science, 2022, 608:2330-2338. doi: 10.1016/j.jcis.2021.10.152
    [29]
    CHERN S-S. A simple intrinsic proof of the gauss-bonnet formula for closed riemannian manifolds[J]. Annals of Mathematics, 1944, 45(4):747-752. doi: 10.2307/1969302
    [30]
    SUN C, MCCLURE J E, MOSTAGHIMI P, et al. Linking continuum-scale state of wetting to pore-scale contact angles in porous media[J]. Journal of Colloid and Interface Science, 2020, 561:173-180. doi: 10.1016/j.jcis.2019.11.105
    [31]
    MCCLURE J E, ARMSTRONG R T, BERRILL M A, et al. Geometric state function for two-fluid flow in porous media[J]. Physical Review Fluids, 2018, 3(8):084306. doi: 10.1103/PhysRevFluids.3.084306
    [32]
    MCCLURE J E, LI Z, BERRILL M, et al. The LBPM software package for simulating multiphase flow on digital images of porous rocks[J]. Computational Geosciences, 2021, 25(3):871-895. doi: 10.1007/s10596-020-10028-9
    [33]
    MCCLURE J E, PRINS J F, MILLER C T. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore cpu-gpu systems[J]. Computer Physics Communications, 2014, 185(7):1865-1874. doi: 10.1016/j.cpc.2014.03.012
    [34]
    ARMSTRONG R T, MCCLURE J E, BERILL M A, et al. Flow regimes during immiscible displacement[J]. Petrophysics, 2017, 58(1):10-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (516) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return