Volume 40 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
LIU Jinhua, LI Daqi, LI Fan, et al.Simulation device and experimental study on leakage and plugging of active water fracture hole[J]. Drilling Fluid & Completion Fluid,2023, 40(2):169-175 doi: 10.12358/j.issn.1001-5620.2023.02.004
Citation: LIU Jinhua, LI Daqi, LI Fan, et al.Simulation device and experimental study on leakage and plugging of active water fracture hole[J]. Drilling Fluid & Completion Fluid,2023, 40(2):169-175 doi: 10.12358/j.issn.1001-5620.2023.02.004

Simulation Device and Experimental Study on Leakage and Plugging of Active Water Fracture Hole

doi: 10.12358/j.issn.1001-5620.2023.02.004
  • Received Date: 2022-12-20
  • Rev Recd Date: 2023-02-10
  • Publish Date: 2023-03-30
  • Research shows that there is no equipment for simulating the mud loss zones in fractures and vugs with active water. Based on the investigation and study on the characteristics of the mud loss zones in fractures and vugs with active water, the functions to be achieved and the corresponding parameters of the simulation apparatus were clearly defined, and the structure and components of the apparatus were determined. The simulation apparatus is composed of five subsystems, which are the fracture and vug simulation subsystem, the formation water simulation subsystem, the lost circulation material slurry injection subsystem, the borehole simulation subsystem and the data acquisition subsystem. This simulation apparatus can be used to simulate a water flowing speed of 10 m/min and has a pressure bearing capacity of 2 MPa, satisfying the needs of controlling mud losses into most fractures and vugs with active water. Using this apparatus, the factors affecting the retention of gel in mud loss channels with active water were evaluated. The test results show that in a mud loss channel with atmospheric pressure, good retention of the lost circulation control gel can be obtained at the following conditions: the injection rate of a lost circulation control gel is greater than 1.2 times of the water flowing rate, the adhesion strength of the gel is greater than 10.1 N/m2, and the density of the gel is between 1.1 g/cm3 and 1.2 g/cm3. This study has provided a guideline to the control of mud losses into fractures and vugs with active water.

     

  • loading
  • [1]
    李辉,刘华康,何仲,等. 塔河油田碳酸盐岩储层恶性漏失空间堵漏凝胶技术[J]. 钻井液与完井液,2019,36(1):25-28.

    LI Hui, LIU Huakang, HE Zhong, et al. Use gel to control severe mud losses in carbonate reservoir formations in Tahe oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):25-28.
    [2]
    王伟志,刘庆来,郭新健,等. 塔河油田防漏堵漏技术综述[J]. 探矿工程(岩土钻掘工程),2019,46(3):42-46,50.

    WANG Weizhi, LIU Qinglai, GUO Xinjian, et al. Review of lost circulaton prevention and plugging techniques in Tahe Oilfield[J]. Exploration Engineering(Rock & soil Drilling and Tunneling), 2019, 46(3):42-46,50.
    [3]
    甘西平,吴正良,王悦坚,等. 塔深1井奥陶系堵漏及微漏强钻工艺技术[J]. 钻井液与完井液,2007,24(6):84-86.

    GAN Xiping, WU Zhengling, WANG Yuejian, et al. Mud losses control technology in Well Tashen-1[J]. Drilling Fluid & Completion Fluid, 2007, 24(6):84-86.
    [4]
    沈建新,黄兆海,刘迎斌,等. 一种具有缝洞驻留能力的堵水剂研究与评价[J]. 钻采工艺,2018,41(3):99-101.

    SHEN Jianxin, HUANG Zhaohai, LIU Yingbin, et al. Development and evaluation of a kind of water-blocking agent[J]. Drilling & Production Technology, 2018, 41(3):99-101.
    [5]
    张怀文,曲从锋,何海星,等. 昭通地区页岩气浅层大缝洞堵漏工具研制[J]. 天然气工业,2021,41(增刊1):182-185.

    ZHANG Huaiwen, Qu Congfeng, HE Haixing, et al. Development of plugging tool for shallow large fracture and cave of shale gas in zhaotong area[J]. Natural Gas Industry, 2021, 41(增刊1):182-185.
    [6]
    张逸群,于超,程光明,等. 聚能筑巢用金属割缝管爆炸成形数值模拟及试验研究[J]. 石油钻探技术,2020,48(6):54-60.

    ZHANG Yiqun, YU Chao, CHENG Guangming, et al. Experimental and numerical study of the explosive forming of slotted metal pipes for energy-gathered nesting plugging[J]. Petroleum Drilling Techniques, 2020, 48(6):54-60.
    [7]
    王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28-33.

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1):28-33.
    [8]
    严君凤,吴金生,蒋炳,等. 高温高压堵漏评价仪器的研制[J]. 钻井液与完井液,2021,38(2):212-217.

    YAN Junfeng, WU Jinsheng, JIANG Bing, et al. Development of a device for evaluating lost circulation materials at high temperature high pressure[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):212-217.
    [9]
    蒋振新,孟胡,熊超,等. 模拟环空流动状态的堵漏试验装置设计[J]. 石油机械,2019,47(9):44-49.

    JIANG Zhenxin, MENG Hu, XIONG Chao, et al. Design of lost circulation control test device simulating annulus flow[J]. CHINA petroleum machinery, 2019, 47(9):44-49.
    [10]
    徐同台, 申威, 冯杰, 等. 钻井工程防漏堵漏技术[M]. 第二版. 北京: 石油工业出版社, 2021: 258-287.

    XU Tongtai, SHEN Wei, FENG Jie, et al. Leakage prevention and plugging technology for drilling engineering [M]. Second Edition. Beijing: Petroleum Industry Press, 2021: 258-287.
    [11]
    於开炳,徐蔓,严竞雄,等. 地下水示踪试验在岩溶隧道勘察中的应用——以利万高速齐岳山隧道为例[J]. 工程勘察,2017,45(10):46-51.

    YU Kaibing, XU Man, YAN Jingxiong, et al. Application of groundwater tracer tests for karst tunnel investigation—taking Qiyueshan Tunnel of Lichuan-Wanzhou expressway as the example[J]. Geotechnical Investigation & Surveying, 2017, 45(10):46-51.
    [12]
    姜光辉,郭芳,汤庆佳,等. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学),2016,52(3):503-510.

    JIANG Guanghui, GUO Fang, TANG Qingjia, et al. Application of tracer test techniques in hydrogeolotical survey in karst area[J]. Journal of Nanjing University(natural sciences), 2016, 52(3):503-510.
    [13]
    潘欢迎. 岩溶流域水文模型及应用研究[D]. 武汉: 中国地质大学, 2014.

    PAN Huanying. Study and application of hydrologic model in karst basin[D]. China University of Geosciences, 2014.
    [14]
    张伟, 徐乐昌, 王尔奇, 等. 放射性同位素示踪测定地浸地下水流速和弥散系数[C]. 中国核科学技术进展报告(第三卷). 哈尔滨: 中国核协会, 2013: 178-183.

    ZHANG Wei, XU Lechang, WANG Erqi, et al. Measurement of flow rate and diffusion coefficient in situ leaching mine groundwater by single well dilution with radioisotopes[C]. Progress Report on China Nuclear Science & Technology(Vol. 3). Harbin : China Nuclear Association, 2013: 178-183.
    [15]
    李旭杰,姚海鹏. 基于示踪试验的岩溶地下河系统研究-以双峰山斗至岩门口地下河为例[J]. 资源信息与工程,2017,32(5):77-78.

    LI Xujie, YAO Haipeng. Study on Karst underground river system based on tracer test - Taking shuangfeng shandou yanmenkou underground river as an example[J]. Resource Information and Engineering, 2017, 32(5):77-78.
    [16]
    田清朝,万军伟,黄琨,等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程,2016,23(5):13-19.

    TIAN Qingchao, WAN Junwei, HUANG Kun, et al. Karsl water system identification and water inflow prediction in gaojiaping tunnel[J]. Safety and Environmental Engineering, 2016, 23(5):13-19.
    [17]
    易连兴,卢海平,赵良杰,等. 鱼泉地下河示踪试验及回收强度法管道结构分析[J]. 工程勘察,2015,43(2):46-51.

    YI Lianxing, LU Haiping, ZHAO Liangjie, et al. Trace tests and conduit structure analysis with recovery intensity in Yuquan underground river[J]. Geotechnical Investigation & Surveying, 2015, 43(2):46-51.
    [18]
    袁玉松,马永生,胡圣标,等. 中国南方现今地质特征[J]. 地球物理学报,2006,49(4):1118-1126.

    YUAN Yusong, MA Yongsheng, HU Shengbiao, et al. Present-day geothermal characteristics in South China[J]. Chinese Jurrnal of Geophysics, 2006, 49(4):1118-1126.
    [19]
    王玮,周祖翼,郭彤楼,等. 四川盆地古地温梯度和中-新生代构造热历史[J]. 同济大学学报(自然科学版),2011,39(4):606-612.

    WANG Wei, ZHOU Zuyi, GUO Tonglou, et al. Early cretaceous-paleocene geothermal gradients and cenozoic tectono-thermal history of Sichuan Basin[J]. Journal of Tongji University(natural sciences), 2011, 39(4):606-612.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (597) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return