MENG Shuang, SONG Jianjian, XU Mingbiao, et al.Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid,2023, 40(1):96-102 doi: 10.12358/j.issn.1001-5620.2023.01.013
Citation: MENG Shuang, SONG Jianjian, XU Mingbiao, et al.Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid,2023, 40(1):96-102 doi: 10.12358/j.issn.1001-5620.2023.01.013

Study on the Performance of a New Low Temperature Early Strength Agent for Well Cement Slurries

doi: 10.12358/j.issn.1001-5620.2023.01.013
  • Received Date: 2022-09-26
  • Rev Recd Date: 2022-10-18
  • Publish Date: 2023-01-31
  • A new low temperature early-strength agent ES-22 has been developed through dispersion-coprecipitation method to solve the slow strength development of cement slurries in shallow and low temperature well cementing. In laboratory experiment, the particle size distribution and micro-structure of ES-22 were analyzed, the effects of ES-22 and other inorganic early-strength agents on the strength development of cement slurries at low temperatures were compared. The effects of ES-22 of different concentrations on the properties of cement slurries were also studied. It was found that ES-22 has particle sizes distributed between 15 μm and 25 μm. Compared with other early-strength agents, ES-22 is the best early-strength agent for the development of the early compressive strength of set cement. At low temperatures, ES-22 has even greater contribution to the development of the mechanical property of the set cement. ES-22 has little, if any, effects on the rheology of the cement slurry, the thickening time of the cement slurry becomes only a little short, and the volume of filter loss is reduced. In laboratory experiment, a set cement containing 4% ES-22 had its compressive strength and flexural strength increased by 204% and 136% respectively over the compressive strength and flexural strength of the blank set cement after aging at 20 ℃ for 24 hours. These results indicate that the early-strength agent ES-22 performs very well in oil well cement slurries.

     

  • [1]
    温盛魁. 低温早强水泥浆体系的研究[D]. 青岛: 中国石油大学(华东), 2008.

    WENG Shengkui. Study on low temperature and early strength cement slurry system[D]. Qingdao: China University of Petroleum (East China), 2008.
    [2]
    王伟齐,孙红,葛修润. 碱激发作用下海相软土固化研究[J]. 硅酸盐通报,2021,40(7):2248-2255. doi: 10.16552/j.cnki.issn1001-1625.20210511.001

    WANG Weiqi, SUN Hong, GE Xiurun. Study on solidification of marine soft soil under alkali excitation[J]. Bulletin of Silicates, 2021, 40(7):2248-2255. doi: 10.16552/j.cnki.issn1001-1625.20210511.001
    [3]
    步玉环,侯献海,郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液,2016,33(1):79-83.

    BU Yuhuan, HOU Xianhai, GUO Shenglai. Indoor study on low-temperature cementing cementing slurry system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):79-83.
    [4]
    WANG C W, WANG R H, BU Y, et al. Design and performance evaluation of a unique deepwater cement slurry[J]. SPE Drilling & Completion, 2011, 26(2):220-226.
    [5]
    黄法礼,王振,易忠来,等. 超细矿渣粉在水泥颗粒中的密实填充作用[J]. 硅酸盐通报,2021,40(08):2647-2652. doi: 10.16552/j.cnki.issn1001-1625.2021.08.013

    HUANG Fali, WANG Zhen, YI Zhonglai, et al. Compact filling effect of ultrafine slag powder in cement particles[J]. Silicate Bulletin, 2021, 40(08):2647-2652. doi: 10.16552/j.cnki.issn1001-1625.2021.08.013
    [6]
    李犇. 水化硅酸钙(C—S—H)凝胶的细观力学机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    LI Ben. Mesoscopic mechanics of calcium silicate (C—S—H) gel hydrated[D]. Harbin: Harbin Engineering University, 2018.
    [7]
    姚明,刘景丽,卢三杰,等. 四川长宁页岩气速凝水泥浆体系研究与应用[J]. 钻井液与完井液,2021,38(3):356-359.

    YAO Ming, LIU Jingli, LU Sanjie, et al. Research and application of gas velocity cement slurry system in Changning Shale, Sichuan[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):356-359.
    [8]
    张海东,韦江雄,赵志广,等. 水化硅酸钙晶种对CaO-SiO2-H2O蒸压体系强度的影响及其机理分析[J]. 材料导报,2017,31(14):122-126. doi: 10.11896/j.issn.1005-023X.2017.014.026

    ZHANG Haidong, WEI Jiangxiong, ZHAO Zhiguang, et al. Effect of calcium silicate hydration on the strength of CaO-SiO2-H2O autoclaving system and its mechanism analysis[J]. Materials Herald, 2017, 31(14):122-126. doi: 10.11896/j.issn.1005-023X.2017.014.026
    [9]
    HONG S Y, GLASSER F P. Phash relations in the CaO-SiO2-H2O system to 200 ℃ at saturated steam pressure[J]. Cem Concr Res, 2004, 34(9):1529-1534. doi: 10.1016/j.cemconres.2003.08.009
    [10]
    余林岑. 水化硅酸钙的制备及其对水泥水化过程的影响[D]. 上海: 华东理工大学, 2018.

    YU Lincen. Preparation of calcium silicate hydrate and its influence on cement hydration process[D]. Shanghai: East China University of Science and Technology, 2018.
    [11]
    TMOTO H, OHTA A, FENG Q, et al. Effect of a calcium silicate hydrate-type accelerator on the hydration and the early strength development of concrete cured at 5 or at 20 degrees centigrade[C]. Third International Conference on Sustainable Construction Materials and Technologies(SCMT 3), Kyoto, Japan. 2013.
    [12]
    KENNETH H, MIKE M F, DOMINIC O, et al. Overcoming deepwater cementing challenges insouth china sea, East Malaysia [C]. IADC\SPE 88012, 2004:1-8.
    [13]
    M MURTAZ E, RAHMAN M K, ALMAJED A A, et al. Mechanical, rheological and microstructural properties of saudi type G cement slurry with silica flour used in saudi oil field under HTHP conditions[C]. SPE 168101, 2013.
    [14]
    许明标,唐海雄,刘正礼. 海洋深水水泥浆体系性能室内研究[J]. 石油天然气学报,2005,27(5):614-616. doi: 10.3969/j.issn.1000-9752.2005.05.024

    XU Mingbiao, TANG Haixiong, LIU Zhengli. Indoor study on the performance of marine deepwater cement slurry system[J]. Journal of Oil and Gas Technology, 2005, 27(5):614-616. doi: 10.3969/j.issn.1000-9752.2005.05.024
    [15]
    宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015

    SONG Jianjian, XU Mingbiao, WANG Xiaoliang, et al. Effect of novel phase change materials on properties of low heat cement slurry[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015
    [16]
    张明昌,牟忠信. 水泥浆失水量对油气层损害影响的试验研究[J]. 钻井液与完井液,2005,22(1):74-75. doi: 10.3969/j.issn.1001-5620.2005.01.023

    ZHANG Mingchang, MOU Zhongxin. Experimental study on the effect of water loss of cement slurry on oil and gas layer damage[J]. Drilling Fluid & Completion Fluid, 2005, 22(1):74-75. doi: 10.3969/j.issn.1001-5620.2005.01.023
    [17]
    刘春英,任国盛,高小建. 新型复合早强剂对水泥砂浆力学性能的影响[J]. 硅酸盐通报,2020,39(12):3806-3811. doi: 10.16552/j.cnki.issn1001-1625.2020.12.009

    LIU Chunying, REN Guosheng, GAO Xiaojian. Effect of the new composite early strength agent on the mechanical properties of cement mortar[J]. Silicate Bulletin, 2020, 39(12):3806-3811. doi: 10.16552/j.cnki.issn1001-1625.2020.12.009
    [18]
    王晓亮,许明标,王清顺,等. 深水表层固井硅酸盐水泥浆体系研究[J]. 石油钻探技术,2010,38(6):11-14. doi: 10.3969/j.issn.1001-0890.2010.06.003

    WANG Xiaoliang, XU Mingbiao, WANG Qingshun, et al. Study on Portland cementing system for deepwater surface cementing[J]. Petroleum drilling technology, 2010, 38(6):11-14. doi: 10.3969/j.issn.1001-0890.2010.06.003
    [19]
    侯献海. 低温早强水泥体系的研究[D]. 青岛: 中国石油大学(华东), 2017.

    HOU Xianhai. Study on low temperature and early strength cement system[D]. Qingdao: China University of Petroleum (East China), 2017.
    [20]
    TAYLOR H F W. Proposed struture for calcium silicate hydrate gel[J]. Journal of the American Ceramic Society, 2005, 69(6):464-467.
    [21]
    包亚莉,王红,梁浩东,等. 新型硅基分级孔材料的制备及其孔隙结构[J]. 天津大学学报(自然科学与工程技术版),2021,54(11):1151-1158.

    BAO Yali, WANG Hong, LIANG Haodong, et al. Preparation of novel silicon-based graded pore materials and their pore structure[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition), 2021, 54(11):1151-1158.
    [22]
    肖宇,张晓媛,石秀丽,等. 硅酸钙水化过程的X射线衍射分析[J]. 伊犁师范学院学报(自然科学版),2015,9(1):38-40.

    XIAO Yu, ZHANG Xiaoyuan, SHI Xiuli. et al. X-ray diffraction analysis of calcium silicate hydration process[J]. Journal of Yili Normal University (Natural Science Edition), 2015, 9(1):38-40.
    [23]
    袁琦,何小芳,张利红,等. 水热合成制备水化硅酸钙-聚氨酯纳米复合材料的结构分析[J]. 硅酸盐通报,2021,40(11):3565-3571. doi: 10.16552/j.cnki.issn1001-1625.20210827.003

    YUAN Qi, HE Xiaofang, ZHANG Lihong, et al. Structural analysis of calcium silicate-polyurethane nanocomposites prepared by hydrothermal synthesis[J]. Bulletin of Silicate, 2021, 40(11):3565-3571. doi: 10.16552/j.cnki.issn1001-1625.20210827.003
    [24]
    SHEN W, ZHANG W, WANG J, et al. The microstructure formation of C—S-H in the HPC paste from nano-scale feature[J]. J Sust Cem-Based Mater, 2019, 8(4):199-213.
    [25]
    LAND G, STEPHAN D. The influence of nano-silica on the hydration of ordinary portland cement[J]. J Mater Sci, 2012, 47(2):1011-1017. doi: 10.1007/s10853-011-5881-1
    [26]
    JEFFREY J,THOMAS, HAMLIN M. et al. Influence of Nucleation Seeding on the HydrationMechanisms of Tricalcium Silicate and Cement[J]. Journal of Physical Chemistry C, 2009, 113(11):4327-4334. doi: 10.1021/jp809811w
    [27]
    张文生,王宏霞,叶家元. 聚羧酸类减水剂对水化硅酸钙微观结构的影响[J]. 硅酸盐学报,2006,34(5):546-550. doi: 10.3321/j.issn:0454-5648.2006.05.007

    ZHANG Wensheng, WANG Hongxia, YE Jiayuan. Effect of polycarboxylic acid superplasticizers on the microstructure of calcium silicate hydrate[J]. Journal of the Silicates, 2006, 34(5):546-550. doi: 10.3321/j.issn:0454-5648.2006.05.007
    [28]
    潘钢华. 一种水化硅酸钙早强剂的制备方法: CN107721228A [P]. 2018-02-23.

    PAN Ganghua. Preparation method of hydrated calcium silicate early strengthening agent: CN107721228A [P]. 2018-02-23.
    [29]
    张朝阳, 蔡熠, 孔祥明,等. 纳米C—S—H对水泥水化、硬化浆体孔结构及混凝土强度的影响[J]. 硅酸盐学报,2019,47(05):585-593. doi: 10.14062/j.issn.0454-5648.2019.05.01

    ZHANG Chaoyang, CAI Yi, KONG Xiangming,et al. Effects of nano-C—S—H on cement hydration, hardened slurry pore structure and concrete strength[J]. Journal of the Silicates, 2019, 47(05):585-593. doi: 10.14062/j.issn.0454-5648.2019.05.01
    [30]
    黄健恒,喻培韬,张先文,等. 具有早强效应的长侧链梳状聚羧酸/C—S—H纳米复合物[J]. 广东化工,2019,46(16):242-243. doi: 10.3969/j.issn.1007-1865.2019.16.115

    HUANG Jianheng,YU Peitao,ZHANG Xianwen, et al. Long side chain comb polycarboxylic acid/C—S—H nanocomposite with early strong effect[J]. Guangdong Chemical Industry, 2019, 46(16):242-243. doi: 10.3969/j.issn.1007-1865.2019.16.115
    [31]
    王同友,符军放,赵琥. 纳米级水化硅酸钙晶种作为油井水泥促凝剂的研究[J]. 钻井液与完井液,2017,34(3):68-71. doi: 10.3969/j.issn.1001-5620.2017.03.013

    WANG Tongyou, FU Junfang, ZHAO Hu. Study on nano calcium silicate hydrate used as oil well cement accelerator[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):68-71. doi: 10.3969/j.issn.1001-5620.2017.03.013
    [32]
    MATSUYAMA H, YOUNG J F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J]. Advances in Cement Research, 2000, 12(1):29. doi: 10.1680/adcr.2000.12.1.29
    [33]
    PLANK J, SCHNLEIN M, KANCHANASON V. Study on the early crystallization of calcium silicate hydrate (C—S—H) in the presence of polycarboxylate superplasticizers[J]. Journal of Organometallic Chemistry, 2018, 869:227-232. doi: 10.1016/j.jorganchem.2018.02.005
  • Relative Articles

    [1]LIU Tao, DONG Sanbao, WANG Dan, GAO Fei, CHENG Xiaowei, FEI Zhongming. Lithium Salt-Sulfoaluminate Slurry System for Negative Temperature Cementing[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(4): 496-505. doi: 10.12358/j.issn.1001-5620.2024.04.011
    [2]WANG Chunquan, YAN Haibing, DENG Tian’an, LIU Bo, YANG Dailin, TIAN Fabin. An Anti-Corrosion Tough Cement Slurry Treated with Self-Crosslinking Epoxy Resin Emulsion[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(4): 522-530. doi: 10.12358/j.issn.1001-5620.2024.04.014
    [3]LIU Jingli, LIU Pingjiang, REN Qiang, LIU Yan, PENG Song, CAO Hongchang, ZHANG Wenyang, CHENG Xiaowei. A Cement Slurry for Large Temperature Difference in Wells of Ten Thousand Meter Depth[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(6): 778-786. doi: 10.12358/j.issn.1001-5620.2023.06.012
    [4]ZHAO Jiansheng, DAI Qing, HUO Jinhua, LI Yang. Preparation and Application of Fluid Loss Additive GT-1 for High Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017
    [5]YU Yongjin, ZHANG Hang, XIA Xiujian, LI Pengpeng, JIN Jianzhou, HU Miaomiao, GUO Jintang. Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014
    [6]ZOU Shuang, XIONG Yudan, ZHANG Tianyi, ZENG Jianguo, ZOU Jianlong, XI Fangzhu. Study and Application of Fluid Loss Additive Used in Cement Slurries for Cementing Salt-Gypsum Stratum[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(6): 765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017
    [7]GENG Chenzi, YAO Xiao, DAI Dan, LI Xuenian, JIANG Tao, YAN Lianguo, WU Xuechao. Effects of Physical Properties of SiO2 Crystalline State on Mechanical Properties of High Temperature Set Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 777-783. doi: 10.3969/j.issn.1001-5620.2020.06.017
    [8]DANG Donghong, GUO Wenmeng, LI Lijun, LI Dong, SHEN Lei, MA Qianyun, CHEN Dacang. Normal Injection, Reverse Squeeze and Intermediate Diversion: A Technology for Cementing the Complex Well **1-H*[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 371-376. doi: 10.3969/j.issn.1001-5620.2020.03.018
    [9]LIU Huibin, LI Jianhua, PANG Heshan, ZHENG Huikai, LIU Dongqing, SUN Xinghua, SONG Weibin. Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 202-208. doi: 10.3969/j.issn.1001-5620.2020.02.012
    [10]XIA Xiujian, YU Yongjin, JIN Jianzhou, XU Ming, LIU Shuoqiong. Development and Study on a High Temperature Salt Resistant Filter Loss Reducer for Well Cementing[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015
    [11]LIU Jingli, PENG Song, WANG Ye, HE Jingchao, YAO Xiaojun, BI Yi, ZHANG Xin, HE Xingwei. Cementing Low-rank Coal Bed with Ultra-low Density Cement Slurry in Erlian Basin[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 344-348. doi: 10.3969/j.issn.1001-5620.2019.03.014
    [12]GUO Yongbin, LI Zhong, LIU Hexing, DONG Zhao, WU Zhiming, MA Chuanhua. Development of a Low Temperature Early Strength Cement Slurry with Low Exothermic Heat of Hydration[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(4): 500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019
    [13]TIAN Ye, FU Junfang, SONG Weikai, XIANG Xianzhong. A New Low Temperature Early Strength Agent for Ultradeep Water Operation[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 224-228. doi: 10.3969/j.issn.1001-5620.2019.02.016
    [14]ZHAO Zhiqiang, CHEN Yuanbo, YI Yong. Calculating Low Temperature Phase Equilibrium of NaCl-KCl-CaCl2 Completion Fluid Based on Pitzer Model[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(2): 126-130. doi: 10.3969/j.issn.1001-5620.2017.02.023
    [15]FU Junfang. Analysis of High Temperature Strength Retrogression of High Water/Cement Ratio Set Cement with Silica Powder[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(1): 112-115. doi: 10.3969/j.issn.1001-5620.2017.01.021
    [16]GENG Jianwei. Study and Application of Low Temperature Early Strength Low Density Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 65-68. doi: 10.3969/j.issn.1001-5620.2017.04.012
    [17]DING Zhiwei, YANG Junlong, WANG Yao, JI Hongfei, YUAN Xiong, RAO Kaib. Cementing Tight Reservoir with Low Temperature High Strength Tough Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(2): 106-110,116. doi: 10.3969/j.issn.1001-5620.2017.02.019
    [18]SONG Benling, ZHANG Naifu, ZHANG Weibin, WEI Jijun, LU Haichuan, SUN Xiaojie. Cement Slurry Used in Block Faja Venezuela[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 92-96. doi: 10.3969/j.issn.1001-5620.2016.04.019
    [19]BU Yvhuan, HOU Xianhai, GUO Shenglai. Study on Low Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 79-83. doi: 10.3969/j.issn.1001-5620.2016.01.016
  • Cited by

    Periodical cited type(6)

    1. 卢海川,朱海金,王健栋,许得禄,金凯,高继超,张翔瑞,石凌龙. 新型油井水泥用纳米基促凝早强剂. 钻井液与完井液. 2024(01): 119-124 . 本站查看
    2. 房延凤,惠一心,尚小朋,丁向群,佟钰. 10℃条件下纳米C-S-H掺量对水泥早期水化的影响. 沈阳建筑大学学报(自然科学版). 2024(03): 505-512 .
    3. 徐鸿志,宋伟宸,步玉环,向常友,柳华杰,路畅. 基于水合物层骨架重构的低温早强胶凝材料. 钻井液与完井液. 2024(03): 357-363 . 本站查看
    4. 张钦岳,陈顺理,陈泽华,岳家平,冷雪霜,王成文. 用于深水/超深水低温固井的纳米水化硅酸钙/明胶接枝磺化醛酮晶种早强剂. 油田化学. 2024(03): 387-392 .
    5. 刘涛,董三宝,王丹,高飞,程小伟,费中明. 负温固井用锂盐-硫铝酸盐水泥浆体系. 钻井液与完井液. 2024(04): 496-505 . 本站查看
    6. 何富国. 一体化提升泵站井桶变形处理措施. 云南水力发电. 2023(12): 193-196 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-032025-042025-05010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 70.2 %META: 70.2 %PDF: 4.8 %PDF: 4.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %其他: 0.1 %其他: 0.1 %China: 0.1 %China: 0.1 %[]: 0.1 %[]: 0.1 %三亚: 0.1 %三亚: 0.1 %上海: 34.5 %上海: 34.5 %东莞: 0.4 %东莞: 0.4 %东营: 0.2 %东营: 0.2 %乌海: 0.3 %乌海: 0.3 %伊春: 0.1 %伊春: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 2.2 %北京: 2.2 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %台州: 0.5 %台州: 0.5 %吕贝克: 0.2 %吕贝克: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大同: 0.1 %大同: 0.1 %天津: 0.9 %天津: 0.9 %太原: 0.1 %太原: 0.1 %宿州: 0.1 %宿州: 0.1 %巴彦淖尔: 0.1 %巴彦淖尔: 0.1 %巴格达: 0.1 %巴格达: 0.1 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常德: 0.6 %常德: 0.6 %广州: 0.2 %广州: 0.2 %张家口: 2.6 %张家口: 2.6 %成都: 1.1 %成都: 1.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %杭州: 0.2 %杭州: 0.2 %武汉: 1.4 %武汉: 1.4 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %波士顿: 0.1 %波士顿: 0.1 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %濮阳: 0.1 %濮阳: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 9.3 %芒廷维尤: 9.3 %荆州: 0.3 %荆州: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 17.8 %西宁: 17.8 %西安: 0.7 %西安: 0.7 %许昌: 0.5 %许昌: 0.5 %诺沃克: 2.3 %诺沃克: 2.3 %贵阳: 1.1 %贵阳: 1.1 %运城: 0.7 %运城: 0.7 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.4 %遵义: 0.4 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.3 %重庆: 0.3 %长治: 0.1 %长治: 0.1 %青岛: 0.2 %青岛: 0.2 %驻马店: 11.8 %驻马店: 11.8 %其他其他China[]三亚上海东莞东营乌海伊春佛山保定克拉玛依兰州北京南京南宁台州吕贝克咸阳哈密哈尔滨哥伦布大同天津太原宿州巴彦淖尔巴格达巴音郭楞常德广州张家口成都新乡新德里无锡昆明晋城杭州武汉沈阳沧州波士顿湖州湘潭濮阳焦作石家庄秦皇岛绵阳舟山芒廷维尤荆州衢州西宁西安许昌诺沃克贵阳运城遂宁遵义郑州鄂州重庆长治青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (978) PDF downloads(76) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return