Citation: | WANG Di, QIU Zhengsong, MIAO Hailong, et al.Study on property control of high density drilling fluids based on modified alferd model[J]. Drilling Fluid & Completion Fluid,2022, 39(6):692-699 doi: 10.12358/j.issn.1001-5620.2022.06.005 |
[1] |
邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.
QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670.
|
[2] |
STAMATAKIS E, YOUNG S, STEFANO G D. Meeting the ultra HTHP fluids challenge [C]. Society of Petroleum Engineers, 2012.
|
[3] |
李雄,董晓强,金军斌,等. 超高温高密度钻井液体系的研究与应用[J]. 钻井液与完井液,2020,37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003
LI Xiong, DONG Xiaoqiang, JIN Junbin, et al. Research and application of ultra-high temperature and high density drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003
|
[4] |
蔡勇,郭保雨,何兴华,等. 新型高密度钻井液加重剂的性能评价及应用[J]. 钻采工艺,2020,43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30
CAI Yong, GUO Baoyu, HE Xinghua, et al. Performance evaluation and application of new high density drilling fluid weighting agent[J]. Drilling and Production Technology, 2020, 43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30
|
[5] |
李炎军,马二龙,张万栋,等. 莺琼盆地高温高密度水基钻井液流变性调控方法[J]. 科学技术与工程,2020,20(26):10740-10744. doi: 10.3969/j.issn.1671-1815.2020.26.027
LI Yanjun, MA Erlong, ZHANG Wandong, et al. Rheological control method of high temperature and high density water-based drilling fluid in Yingqiong basin[J]. Science Technology and Engineering, 2020, 20(26):10740-10744. doi: 10.3969/j.issn.1671-1815.2020.26.027
|
[6] |
夏孝杰. 塔中北坡地区抗高温超高密度钻井液优化实验研究[D]. 中国石油大学(华东) , 2019.
XIA Xiaojie. Experimental study on optimization of high temperature resistant ultra-high density drilling fluid in the northern slope of Tazhong[D]. China University of Petroleum (East China), 2019
|
[7] |
潘谊党,于培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液,2019,36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001
PAN yidang, YU Peizhi, MA Jingyuan. Research progress on heavy material settlement of high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001
|
[8] |
AHMAD H M, KAMAL M S, AL-HARTHI M A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids[J]. Journal of Molecular Liquids, 2018, 252:133-143. doi: 10.1016/j.molliq.2017.12.135
|
[9] |
KONAKAWA Y, ISHIZAKI K. The particle size distribution for the highest relative density in a compacted body[J]. Powder Technology, 1990, 63(3):241-246. doi: 10.1016/0032-5910(90)80049-5
|
[10] |
BARRY M M, JUNG Y, LEE J K, et al. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids[J]. Journal of Petroleum Science & Engineering, 2015, 127:338-346.
|
[11] |
AL-YASIRI M , AWAD A , PERVAIZ S , et al. Influence of silica nanoparticles on the functionality of water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2019.
|
[12] |
黄维安,邱正松,徐加放,等. 重晶石粒度级配对加重钻井液流变性的影响[J]. 钻井液与完井液,2010,27(4):23-25.
HUANG Wei'an, QIU Zhengsong, XU Jiafang, et al. The effect of barite particle size distribution on the fluidity of heavy drilling fluid[J]. Drilling Fluid & Completion Fluid, 2010, 27(4):23-25.
|
[13] |
苗海龙,邱正松,李自立,等. 重晶石粉颗粒级配对高密度钻井液性能影响的实验探讨[J]. 当代化工,2021,50(5):1090-1095.
MIAO Hailong, QIU Zhengsong, LI Zili, et al. Experimental discussion on the influence of barite powder particle size distribution on the performance of high density drilling fluid[J]. Contemporary Chemical Industry, 2021, 50(5):1090-1095.
|
[14] |
FURNAS C C. The relations between specific volume, voids, and size composition in systems of broken solids of mixed sized, department of commerce, bureau of mines[J]. Reports of investigations, 1928:1-10.
|
[15] |
WESTMAN A, HUGILL H R. The packing of particlesl[J]. Journal of the American Ceramic Society, 2010, 13(10):767-779.
|
[16] |
SUZUKI M, OSHIMA T. Co-ordination number of a multi-component randomly packed bed of spheres with size distribution[J]. Powder Technology, 1985, 44(3):213-218. doi: 10.1016/0032-5910(85)85002-6
|
[17] |
DINGER D R, FUNK J E. Particle-packing phenomena and their application in materials processing[J]. MRS Bulletin, 2013, 22(12):19-23.
|