Volume 39 Issue 5
Jan.  2023
Turn off MathJax
Article Contents
LI Chunyue, LI Qin, LI Deming, et al.Method of predicting flow conductivity of long-term acid-etched fractures in carbonate reservoirs in shunbei oilfield [J]. Drilling Fluid & Completion Fluid,2022, 39(5):646-653 doi: 10.12358/j.issn.1001-5620.2022.05.017
Citation: LI Chunyue, LI Qin, LI Deming, et al.Method of predicting flow conductivity of long-term acid-etched fractures in carbonate reservoirs in shunbei oilfield [J]. Drilling Fluid & Completion Fluid,2022, 39(5):646-653 doi: 10.12358/j.issn.1001-5620.2022.05.017

Method of Predicting Flow Conductivity of Long-Term Acid-Etched Fractures in Carbonate Reservoirs in Shunbei Oilfield

doi: 10.12358/j.issn.1001-5620.2022.05.017
  • Received Date: 2022-04-15
  • Accepted Date: 2022-06-06
  • Rev Recd Date: 2022-05-11
  • Publish Date: 2023-01-10
  • Acid fracturing has been performed with difficulties in the high temperature high pressure carbonate rock hydrocarbon reservoirs in the Shunbei block. The main problem is the dramatic reduction of the effect of acid fracturing resulted from the losses of the flow conductivity of the acid-etched fractures under the long-term action of the closure stresses. In laboratory experiment, the flow conductivity of acid-etched fractures is evaluated to study the changing patterns of the flow conductivity of the acid-etched fractures under different mass fractions of acid, temperatures and closure time. Based on the equations of the flow conductivity of acid-etched fractures under various conditions, a method for predicting the conductivity of long-term acid-etched fractures in Shunbei carbonate reservoir is established and verified. Use this method, the changing pattern of the flow conductivity of the acid-etched fractures at different lengths of time and flow rates is simulated. The simulation results show that at low closure stresses, the reaction rate of the acid is the dominant factor affecting the flow conductivity of the acid-etched fractures. At high closure stresses, however, the dominant factors affecting the flow conductivity of the acid-etched fractures include closure stress, rock characteristics and the nonuniformity of the rock surfaces. The closure stress, on the other hand, is the dominant factor controlling the deformation of the surfaces of the rocks and is also the decisive factor affecting the flow conductivity of the long-term acid-etched fractures. Under long-term action of closure stress, the flow conductivity of a fracture at the deep part of the fracture is decreased in an amplitude larger than the decrease in the flow conductivity of the fracture at its mouth. The distribution of the flow conductivity of artificial fractures produced under mid-term and long-term acid-etching is controlled by the rate of reaction between the acid and the rock.

     

  • loading
  • [1]
    BEG M S, KUNAK A O, GONG M, et al. A systematic experimental study of acid fracture conductivity[J]. SPE Production & Facilities, 3109:8.1996.
    [2]
    RUFFET C S, FERY J J, ONAISI A. Acid-fracturing treatment: a surface-topography analysis of acid-etched fractures to determine residual conductivity[J]. SPE Journal, 3817:5.1997.
    [3]
    MALAGON C, POURNIK M, HILL A D. The texture of acidized fracture surfaces: implications for acid fracture conductivity[J]. SPE Production & Operations, 2008, 23(3): 343-352.
    [4]
    MELENDEZ M G, POURNIK M, ZHU D, et al. The effects of acid contact time and the resulting weakening of the rock surfaces on acid fracture conductivity[C]//European Formation Damage Conference. OnePetro, 2007.
    [5]
    NINO-PENALOZA A, AL-MOMIN A, ZHU D, et al. New insights about acid fracture conductivity at laboratory scale[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2015.
    [6]
    陈星宇,杨兆中,李小刚,等. 酸蚀裂缝导流能力实验及预测模型研究综述[J]. 断块油气田,2012,19(5):618-621. doi: 10.6056/dkyqt201205018

    CHEN Xingyu, YANG Zhaozhong, LI Xiaogang, et al. Summary of research on conductivity of acid-etched fractures and prediction models[J]. Fault Block Oil & Gas Field, 2012, 19(5):618-621. doi: 10.6056/dkyqt201205018
    [7]
    彭 瑀,李勇明,赵金洲,等. 缝洞型碳酸盐岩油藏酸蚀裂缝导流能力模拟与分析[J]. 石油学报,2015,36(5):606-611,640. doi: 10.7623/syxb201505010

    PENG Yu, LI Yongming, ZHAO Jinzhou, et al. Simulation and analysis of acid-etched fracture conductivity of fractured-vuggy carbonate reservoirs[J]. Acta Petrolei Sinica, 2015, 36(5):606-611,640. doi: 10.7623/syxb201505010
    [8]
    钟小军,张锐,吴刚,等. 复杂非均质碳酸盐岩储层酸岩反应动力学特征及酸压对策研究[J]. 钻井液与完井液,2020,37(6):798-802. doi: 10.3969/j.issn.1001-5620.2020.06.021

    ZHONG Xiaojun, ZHANG Rui, WU Gang, et al. Study on dynamic characteristics of acid rock reaction and acid fracturing countermeasures in complex heterogeneous carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):798-802. doi: 10.3969/j.issn.1001-5620.2020.06.021
    [9]
    吴亚红,吴虎,王明星,等. 基于导流能力评价实验的复合酸化压裂技术[J]. 科学技术与工程,2020,20(31):12776-12781. doi: 10.3969/j.issn.1671-1815.2020.31.014

    WU Yahong, WU Hu, WANG Mingxing, et al. Composite acid fracturing technology based on flow conductivity evaluation experiments[J]. Science Technology and Engineering, 2020, 20(31):12776-12781. doi: 10.3969/j.issn.1671-1815.2020.31.014
    [10]
    张路锋,牟建业,贺雨南,等. 高温高压碳酸盐岩油藏酸蚀裂缝导流能力实验研究[J]. 西安石油大学学报(自然科学版),2017,32(4):93-97.

    ZHANG Lufeng, MOU Jianye, HE Yunan, et al. Experimental study on conductivity of acid-etched fractures in high-temperature and high-pressure carbonate reservoirs[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(4):93-97.
    [11]
    赵立强,高俞佳,袁学芳,等. 高温碳酸盐岩储层酸蚀裂缝导流能力研究[J]. 油气藏评价与开发,2017,7(1):20-26. doi: 10.3969/j.issn.2095-1426.2017.01.004

    ZHAO Liqiang, GAO Yujia, YUAN Xuefang, et al. Study on the conductivity of acid-etched fractures in high-temperature carbonate reservoirs[J]. Reservoir Evaluation and Development, 2017, 7(1):20-26. doi: 10.3969/j.issn.2095-1426.2017.01.004
    [12]
    刘享,伊向艺,吴元琴,李沁. 酸压裂缝中酸液微观流动数值模拟及分析[J]. 钻井液与完井液,2017,34(4):106-111. doi: 10.3969/j.issn.1001-5620.2017.04.020

    LIU Xiang, YI Xiangyi, WU Yuanqin, et al. Numerical simulation and analysis of acid flow in acid fractures[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):106-111. doi: 10.3969/j.issn.1001-5620.2017.04.020
    [13]
    宋巍. ZG8-43井区鹰山组储层酸蚀裂缝导流能力影响因素研究[D]. 西南石油大学, 2016.

    SONG Wei. Research on influencing factors of conductivity of acid-etched fractures of Yingshan Formation reservoir in ZG8-43 well area[D]. Southwest Petroleum University, 2016.
    [14]
    王玉芳,杜建军,牛新年,等. 碳酸盐岩酸压裂缝导流能力随缝长变化规律研究[J]. 地质力学学报,2015,21(4):546-554. doi: 10.3969/j.issn.1006-6616.2015.04.010

    WANG Yufang, DU Jianjun, NIU Xinnian, et al. Study on the variation of conductivity of acid-fractured fractures in carbonate rocks with fracture length[J]. Journal of Geomechanics, 2015, 21(4):546-554. doi: 10.3969/j.issn.1006-6616.2015.04.010
    [15]
    岳迎春,郭建春,冯松,等. 酸蚀裂缝导流能力数值模型研究[J]. 长江大学学报(自科版),2015,12(20):55-59. doi: 10.16772/j.cnki.1673-1409.2015.20.014

    YUE Yingchun, GUO Jianchun, FENG Song, et al. Numerical model research on conductivity of acid-etched fractures[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(20):55-59. doi: 10.16772/j.cnki.1673-1409.2015.20.014
    [16]
    吴霞,伊向艺,黄文强,等. 酸蚀裂缝差异化刻蚀量化研究及影响因素探讨[J]. 钻井液与完井液,2019,36(198):250-256.

    WU Xia, YI Xiangyi, HUANG Wenqiang, et al. Discussion on the Quantitative Study and lmpact Factors of Differentialized Corrosion in Fractures Generated by Acid Corrosion[J]. Drilling Fluid & Completion Fluid, 2019, 36(198):250-256.
    [17]
    顾亚鹏,伊向艺,戴亚婷,等. 酸岩反应有效作用距离确定新方法探讨[J]. 科学技术与工程,2015,15(27):34-37. doi: 10.3969/j.issn.1671-1815.2015.27.006

    GU Yapeng, YI Xiangyi, DAI Yating, et al. Discussion on a new method for determining the effective distance of acid rock reaction[J]. Science Technology and Engineering, 2015, 15(27):34-37. doi: 10.3969/j.issn.1671-1815.2015.27.006
    [18]
    李沁. 高黏度酸液酸岩反应动力学行为研究[D]. 成都理工大学, 2013.

    LI Qin. Study on the reaction kinetics of high-viscosity acid liquid and acid rock[D]. Chengdu University of Technology, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (965) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return