Volume 39 Issue 5
Jan.  2023
Turn off MathJax
Article Contents
GUO Xing, SUN Xiao, MU Jingfu, et al.Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015
Citation: GUO Xing, SUN Xiao, MU Jingfu, et al.Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015

Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid

doi: 10.12358/j.issn.1001-5620.2022.05.015
  • Received Date: 2022-06-01
  • Rev Recd Date: 2022-07-05
  • Publish Date: 2023-01-10
  • In order to optimize the supercritical CO2 fracturing technology and construction parameters, considering the interaction between proppant particles in supercritical CO2 Fracturing Fluid, the multiphase particle grid method in Euler Lagrange method is used to establish the mathematical model of CO2 fracturing proppant migration. The accuracy of the model is verified by indoor hydraulic fracturing proppant migration model experiment, and the supercritical CO2 fracturing proppant migration law is calculated and analyzed. Research shows: Due to the low viscosity of non tackifying CO2, the sand carrying effect is very poor, and the optimization of other parameters has little effect on the sand carrying effect; When the viscosity of CO2 increases to 2.5 mPa·s, the sand carrying effect can be effectively improved. The combination of ultra-light proppant and fine particles has little difference between the sand carrying effect and the viscosity increasing to 10 mPa·s; Optimizing the density ratio of proppant to size can improve the sand carrying effect more obviously; Increasing the displacement can improve the sand carrying effect, but if the displacement continues to increase, the sand carrying effect changes little; Fluid filtration has little effect on CO2 sand-carrying effect. This study provides technical support for solving the problem of poor sand carrying performance of CO2, and has important guiding significance for supercritical CO2 fracturing design optimization and field construction.

     

  • loading
  • [1]
    WANG H, LI G, SHEN Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Sources, 2012, 34:1426-1435. doi: 10.1080/15567036.2010.529570
    [2]
    ROGALA A, KRZYSIEK J, BERNACIAK M, et al. Non-aqueous fracturing technologiesfor shale gas recovery[J]. Physicochem Problems Mineral Process, 2012, 49(1):313-322.
    [3]
    LEE J Y, WEINGARTEN M, GE S. Induced seismicity: the potential hazard from shale gas development and CO2, geologic storage[J]. Geosciences Journal, 2016, 20(1):137-148. doi: 10.1007/s12303-015-0030-5
    [4]
    王香增,孙晓,罗攀,等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏,2019,31(2):4-10.

    WANG Xiangzeng, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2):4-10.
    [5]
    黄 程,霍丽如,吴辰泓. 基于非常规油气开发的CO2资源化利用技术进展及前景[J]. 非常规油气,2022,9(1):1-9.

    HUANG Cheng, HUO Liru, WU Chenhong. Progress and prospect of CO2 resource utilization technology based on unconventional oil and gas development[J]. Unconventional Oil & Gas, 2022, 9(1):1-9.
    [6]
    郭兴,孙晓,穆景福,等. 超临界CO2压裂井筒传热规律[J]. 钻井液与完井液,2021,38(6):782-789.

    GUO Xing, SUN Xiao, MU Jingfu, et al. Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):782-789.
    [7]
    陈祉娉,王长权,位予瑄,等. 基于干法压裂的CO2与致密储层置换规律的研究[J]. 非常规油气,2021,8(6):106-111.

    CHEN Zhiping, WANG Changquan, WEI Yuxuan, et al. Study on replacement law of CO2 and tight reservoirbased on dry fracturing[J]. Unconventional Oil & Gas, 2021, 8(6):106-111.
    [8]
    杨洪,李彦林,郭庆,等. VF-8 清洁二氧化碳泡沫前置液压裂工艺在延长气井的应用[J]. 非常规油气,2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009

    YANG Hong, LI Yanlin, GUO Qing, et al. Application of VF-8 clean CO2 foam pad fluid fracturing technology to Yanchang gas wells[J]. Unconventional Oil & Gas, 2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009
    [9]
    穆景福,高志亮,张 力,等. 清水和液态CO2压裂对页岩破裂影响实验研究[J]. 非常规油气,2021,8(5):87-92.

    MU Jingfu, GAO Zhiliang, ZHANG Li, et al. Experimental study of the effect of water and liquid CO2 fracturing on shale fracture morphology[J]. Unconventional Oil & Gas, 2021, 8(5):87-92.
    [10]
    GUO X, NI H, LI M, et al. Experimental study on the influence of supercritical carbon dioxide soaking pressure on the mechanical properties of shale[J]. Indian Geotechnical Journal, 2018, 48(2):384-391. doi: 10.1007/s40098-017-0289-8
    [11]
    BINGBAI, HONG-JIANNI, XIANSHI, et al. The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale[J]. Energy, 2021, 228:1.
    [12]
    王猛,王海柱,李根生,等. 超临界CO2压裂缝内携砂数值模拟[J]. 石油机械,2018,46(11):72-78.

    WANG Meng, WANG Haizhu, LI Gensheng, et al. Numerical Study of Proppant Transport with Supercritical CO2 in Fracture[J]. CHINA PETROLEUM MACHINERY, 2018, 46(11):72-78.
    [13]
    ZENG J, LI H, ZHANG D. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2016, 33:264-277.
    [14]
    JUNSHENG ZENG, HENG LI, DONGXIAO ZHANG. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science & Engineering, 2016, 33:264-277.
    [15]
    JUNSHENG ZENG, HENG LI, DONGXIAO ZHANG. Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method[J]. Fuel, 2019, 245:316-335. doi: 10.1016/j.fuel.2019.02.056
    [16]
    PATANKAR N A, JOSEPH D D. Lagrangian numerical simulation of particulate flows[J]. International Journal of Multiphase Flow, 2001, 27(10):1685-1706. doi: 10.1016/S0301-9322(01)00025-8
    [17]
    CROWE CLAYTON T, SCHWARZKOPF JOHN D, SOMMERFELD MARTIN, et al. Multiphase flows with droplets and particles[M]. 2nd ed. CRC Press; 2012.
    [18]
    GU M, MOHANTY K K. Effect of foam quality on effectiveness of hydraulic fracturing in shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70:273-285. doi: 10.1016/j.ijrmms.2014.05.013
    [19]
    ROOSTAEI M, NOURI A, FATTAHPOUR V. Numerical simulation of proppant transport in hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2018, 163:119-138. doi: 10.1016/j.petrol.2017.11.044
    [20]
    O’ROURKE PJ, SNIDER DM. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets[J]. Chemical Engineering Science, 2010, 65(22):6014-6028. doi: 10.1016/j.ces.2010.08.032
    [21]
    O’ROURKE PJ, SNIDER DM. A new blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows[J]. Powder Technol, 2014, 256:39-51. doi: 10.1016/j.powtec.2014.01.084
    [22]
    SNIDER D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of computational physics, 2001, 170(2):523-549. doi: 10.1006/jcph.2001.6747
    [23]
    WEN C Y, YU Y H. Mechanics of Fluidization[J]. Chem. Eng. Process. Symp. Ser., 1966, 162:100-110.
    [24]
    VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journalof Physical and Chemical Reference Data, 1990, 19(3):763-808. doi: 10.1063/1.555875
    [25]
    PERKINS T K, KERN L R. Widths of hydraulic fractures[J]. Journal of petroleum technology, 1961, 13(9):937-949. doi: 10.2118/89-PA
    [26]
    NORDREN R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineers Journal, 1972, 12(4):306-314.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (575) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return