Volume 39 Issue 5
Jan.  2023
Turn off MathJax
Article Contents
CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al.High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid,2022, 39(5):601-607 doi: 10.12358/j.issn.1001-5620.2022.05.011
Citation: CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al.High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid,2022, 39(5):601-607 doi: 10.12358/j.issn.1001-5620.2022.05.011

High Temperature High Density Cement Slurry with Corrosion Inhibition Property

doi: 10.12358/j.issn.1001-5620.2022.05.011
  • Received Date: 2022-05-19
  • Rev Recd Date: 2022-06-30
  • Publish Date: 2023-01-10
  • CO2 gas in the deeper part of a high temperature high pressure well generally causes corrosion to the set cement and damages the sealing integrity of the cement sheath. To develop a high temperature high density cement slurry with high corrosion inhibitive capacity, studies were conducted on the key cement materials, and a high temperature high density cement slurry with high corrosion inhibitive capacity was formulated. Analyses of the performance and micro morphology of the cement slurry show that manganese ore powder weighting material can remarkably increase the density of a cement slurry, and the cement slurry also has good corrosion inhibition property at high temperature. In formulating the cement slurry, a filter loss reducer JS18L was used to control high temperature filtration rate, and a cement retarder H16L was used to control thickening time. The corrosion inhibitive capacity of the cement slurry was improved with the use of an inorganic corrosion inhibitor NAM-H and an organic corrosion inhibitor SZ-M2. Using these materials, a high temperature high density (1.90-2.20 g/cm3) cement slurry was formulated. The new cement slurry has good rheology, good stability, low filter loss of less than 50 mL and thickening time adjustable between 3 h and 5 h. The high density set cement at high temperatures has stable mechanical properties and good corrosion inhibitive capacity. The deterioration rate of the 30 d compressive strength of the set cement is less than 25%, and the depth of corrosion is less than 1.5 mm. The results of the study provide technical support to the cementing of high temperature high pressure wells with acid gases and CO2 geological sequestration wells.

     

  • loading
  • [1]
    王雯娟,雷霄,鲁瑞彬,等. 南海西部异常高温高压气藏区域产能预测技术[J]. 地球科学,2019,44(8):2636-2642.

    WANG Wenjuan, LEI Xiao, LU Ruibin, et al. Regional productivity prediction technology for abnormal high temperature and high pressure gas reservoirs in western south China sea[J]. Earth Science, 2019, 44(8):2636-2642.
    [2]
    赵健,赵俊峰,任康绪,等. 巴西桑托斯盆地高含CO2油气藏类型、特征及成因模式[J]. 吉林大学学报(地球科学版),2021,51(6):1654-1664.

    ZHAO Jian, ZHAO Junfeng, REN Kangxu, et al. Main types, characteristics and genetic model of oil & gas reservoirs with high CO 2 content in Santos basin, Brazil[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6):1654-1664.
    [3]
    朱忠锋. 蓬莱油田油套管腐蚀机理研究[D]. 北京: 中国石油大学(北京), 2019.

    ZHU Zhongfeng. Study on corrosion mechanism of oil casing in Penglai oilfield analysis[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [4]
    BIHUA X, BIN Y, YONGQING W, et al. H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells[J]. Construction and Building Materials, 2018, 188:161-169. doi: 10.1016/j.conbuildmat.2018.08.120
    [5]
    BRUCKDORFER R A. Carbon dioxide corrosion in oil well cements[A] //Rocky Mountain Regions ed. Meeting of the Society of Petroleum Engineers[C]. SPE 15176, 1986: 1–9.
    [6]
    SHEB J C. Effect of CO2 attack on cement in hightemperrature applications[A]//SPE/IADC Drilling Conference[C]. Dallas, Texas, American, SPE/IADC18618, 1989: 1-8.
    [7]
    OMOTAYO O, HIMANSHU M, RAMADAN A, et al. Experimental study of the effects of CO2 concentration and pressure at elevated temperature on the mechanical integrity of oil and gas well cement[J]. Journal of Natural Gas Science and Engineering, 2017, 44:299-313. doi: 10.1016/j.jngse.2017.04.009
    [8]
    ZHENG Guanyi ,GUO Xiaoyang , LI Zaoyuan , et al. Design and evaluation of high temperature well cementing slurry system based on fractal theory[J]. Energies, 2021, 14(22):7552. doi: 10.3390/en14227552
    [9]
    李光辉. 超高密度水泥浆体系实验研究与应用[J]. 科学技术与工程,2016,16(11):147-151.

    LI Guanghui. Experimental research and application of ultra high density cement slurry system[J]. Science Technology and Engineering, 2016, 16(11):147-151.
    [10]
    赵军,徐璧华,邱汇洋,等. 抗高温防CO2和H2S腐蚀水泥浆体系研发与应用[J]. 中国海上油气,2017,29(3):91-94.

    ZHAN Jun, XU Bihua, QIU Huiyang, et al. Development and application of high temperature resistant and CO2 and H2S resistant cement slurry system[J]. China Offshore Oil and Gas, 2017, 29(3):91-94.
    [11]
    GB/T 19139—2012, 油井水泥试验方法[S].

    GB/T 19139—2012, Test method for oil well cement [S].
    [12]
    SY/T 6466—2000,油井水泥石抗高温性能评价方法[S].

    SY/T 6466—2000, Evaluation method of high temperature resistance of oil well cement [S].
    [13]
    PATHANIA, A, SHUKLA, A, VASHISHT, R. Influence of mineral additives on the packing density of ternary mix[J]. Cement Wapno Beton, 2020, 25(2):153-161.
    [14]
    KNOP, Y, PELED, A, COHEN, R. Influences of limestone particle size distributions and contents on blended cement properties[J]. Construction and Building Materials, 2014, 71:26-34. doi: 10.1016/j.conbuildmat.2014.08.004
    [15]
    郭锦棠,刘振兴,何军,等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.

    GUO Jintang, LIU Zhenxing, HE Jun, et al. Synthesis and properties of a new high-temperature and salt-resistant fluid loss additive LX-1[J]. Journal of Tianjin University(Science and Technology), 2021, 54(3):318-323.
    [16]
    夏修建,于永金,陈洲洋,等. 一种新型超高温固井水泥浆缓凝剂[J]. 天然气工业,2021,41(9):98-104.

    XIA Jianjian, YU Yongjin, CHEN Zhouyang, et al. A new type of super high temperature cement slurry retarder[J]. Natural Gas Industry, 2021, 41(9):98-104.
    [17]
    邹建龙,屈建省,许涌深,等. 油井水泥缓凝剂研究进展[J]. 油田化学,2008,25(4):386-390.

    ZOU Jianlong, QU Jiansheng, XU Yongshen, et al. Research progress of oil well cement retarder[J]. Oilfield Chemistry, 2008, 25(4):386-390.
    [18]
    张聪,张景富,乔宏宇,等. 深井高温抗二氧化碳腐蚀水泥浆体系设计与优选[J]. 石油钻采工艺,2010,32(5):39-43.

    ZHANG Cong, ZHANG Jingfu, QIAO Hongyu, et al. Design and select of resisting corrosion cement slurries by carbon dioxide for high temperature deep well[J]. Oil Drilling & Production Technology, 2010, 32(5):39-43.
    [19]
    张易航,宋旭辉,许明标,等. 固井水泥石腐蚀防治研究进展[J]. 应用化工,2019,48(10):2450-2455.

    ZHANG Yihang, SONG Xuhui, XU Mingbiao, et al. Research progress on corrosion prevention of cementing cement stone[J]. Applied Chemical Industry, 2019, 48(10):2450-2455.
    [20]
    高浩. 矿物掺合料对混凝土防腐性能影响的研究[D]. 武汉: 武汉大学, 2017.

    GAO Hao. Study on the influence of mineral admixtures on the anti-corrosion performance of concrete [D]. Wuhan: Wuhan University, 2017.
    [21]
    张红丹. 水溶性树脂水泥浆体系的抗腐蚀性能研究[D]. 成都: 西南石油大学, 2016.

    ZHANG Hongdan. Study on corrosion resistance of water soluble resin cement slurry system [D]. Chengdu: Southwest Petroleum University, 2016.
    [22]
    宋鹤,杨威,唐俊峰,等. 耐高温高压超高密度水泥石力学性能[J]. 钻井液与完井液,2021,38(6):771-777.

    SONG he, YANG Wei, TANG Junfeng, et al. Mechanical properties of high temperature and high pressure resistant ultra-high density cement paste[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):771-777.
    [23]
    ELAHEH A, TERRY B, GIANG D. Evaluation of cement sheath integrity subject to enhanced pressure[J]. Journal of Petroleum Science and Engineering, 2018, 170:1-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (652) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return