Volume 39 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
CUI Peng, YANG Zhishu, MA Shuangzheng.Synthesis and properties of high temperature resistant environmental protection shear strength improving agent[J]. Drilling Fluid & Completion Fluid,2022, 39(4):441-445 doi: 10.12358/j.issn.1001-5620.2022.04.007
Citation: CUI Peng, YANG Zhishu, MA Shuangzheng.Synthesis and properties of high temperature resistant environmental protection shear strength improving agent[J]. Drilling Fluid & Completion Fluid,2022, 39(4):441-445 doi: 10.12358/j.issn.1001-5620.2022.04.007

Synthesis and Properties of High Temperature Resistant Environmental Protection Shear Strength Improving Agent

doi: 10.12358/j.issn.1001-5620.2022.04.007
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-03-20
  • Publish Date: 2022-07-30
  • In order to improve the anti-viscosity and environmental performance of the extractant used for water-based drilling fluid, LVHY-1 was synthesized by using low viscosity anionic cellulose sodium salt (PAC-LV) and hexadecyl isocyanate as raw materials, and dibutyltin dilaurate (DBTDL) as catalyst. The optimum synthesis conditions were determined by orthogonal experiment: mass ratio of PAC-LV to cetyl isocyanate 4:1, reaction temperature 60 ℃, reaction time 12 h, DBTDL concentration 0.4%. The molecular structure was characterized by 1H-NMR. Rheological property test results showed that the dynamic plastic ratio (RYP) increased with the increase of LVHY-1 after hot aging test at 120 ℃. After hot aging at 170 ℃ for 16 h, the RYP of 0.2% LVHY-1 drilling fluid still reached 0.5 Pa/mPa·s, and kept good effect after hot aging for 64 h, showing excellent temperature and weather resistance. Transmission electron microscopy (TEM) observation showed that LVHY-1 could form a three-dimensional network structure in solution, which was the reason for the effect of LVHY-1. The test structure of environmental performance showed that the semi-maximum effective concentration (EC50) of LVHY-1 was 30 100 mg/L, and the biodegradability evaluation index (Y) was 18.25, which met the emission standard and was easy to be degraded by microorganisms.

     

  • loading
  • [1]
    CAMARA P C F, MADRUGA L Y C, MARQUES N N, et al. Evaluation of polymer/bentonite synergy on the properties of aqueous drilling fluids for high-temperature and high-pressure oil wells[J]. Journal of Molecular Liquids, 2021, 327:114808. doi: 10.1016/j.molliq.2020.114808
    [2]
    ZHUANG G Z, ZHANG Z Z, PENG S. M., et al. Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite[J]. Applied Clay Science, 2018, 161:505-512. doi: 10.1016/j.clay.2018.05.018
    [3]
    AGWU O E, AKPABIO J U, EKPENYONG M E, et al. A critical review of drilling mud rheological models[J]. Journal of Petroleum Science and Engineering, 2021, 203:108659. doi: 10.1016/j.petrol.2021.108659
    [4]
    SUN J S, CHANG X F, LYU K H, et al. Salt-responsive zwitterionic copolymer as tackifier in brine drilling fluids[J]. Journal of Molecular Liquids, 2020, 319:114345. doi: 10.1016/j.molliq.2020.114345
    [5]
    VILLADA Y, GALLARDO F, ERDMANN E, et al. Functional characterization on colloidal suspensions containing xanthan gum (XGD) and polyanionic cellulose (PAC) used in drilling fluids for a shale formation[J]. Applied Clay Science, 2017, 149:59-66. doi: 10.1016/j.clay.2017.08.020
    [6]
    GAUTAM S, GURIA C, RAJAK V K. A state of the art review on the performance of high-pressure and high-temperature drilling fluids: Towards understanding the structure-property relationship of drilling fluid additives[J]. Journal of Petroleum Science and Engineering, 2022:110318.
    [7]
    RK RODRIGUES,M NACCACHE,PRDS MENDES, et al. Rheological modifiers in drilling fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2020:104397.
    [8]
    褚奇,石秉忠,李涛,等. 水基钻井液用低增黏提切剂的合成与性能评价[J]. 钻井液与完井液,2019,36(6):689-693.

    CHU Qi, SHI Bingzhong, LI Tao, et al. Synthesis and evaluation of a low viscosity gelling agent for water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):689-693.
    [9]
    CHU Q, LIN L. Synthesis and properties of an improved agent with restricted viscosity and shearing strength in water-based drilling fluid[J]. Journal of Petroleum Science and Engineering, 2019, 173:1254-1263. doi: 10.1016/j.petrol.2018.10.074
    [10]
    GB/T 16783.1—2014. 石油天然气工业 钻井液现场测试 第1部分: 水基钻井液[S]. 2014.

    GB/T 16783.1—2014. Oil and gas industry drilling fluid field test Part 1: water-based drilling fluid [S]. 2014.
    [11]
    GB/T 15441—1995. 水质 急性毒性的测定 发光细菌法[S]. 1995.

    GB/T 15441-1995. Water quality determination of acute toxicity luminescent bacterial method [S]. 1995.
    [12]
    HJ 828—2017. 水质 化学需氧量的测定 重铬酸盐法[S]. 2017.

    HJ 828-2017. Water quality determination of the chemical oxygen demand dichromate method [S]. 2017.
    [13]
    HJ 505—2009. 水质 五日生化需氧量(BOD5)的测定 稀释与接种法[S]. 2009.

    HJ 505—2009. Water quality determination of biochemical oxygen demand after 5 days(BOD5) of dilution and seeding method [S]. 2009.
    [14]
    易绍金, 佘跃惠. 石油与环境微生物技术[M]. 北京: 中国地质大学出版社, 2002.

    YI Shaojin, She Yuehui. Petroleum and environmental microbiology technology [M]. Beijing: China University of Geosciences Press, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (615) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return