Volume 39 Issue 3
May  2022
Turn off MathJax
Article Contents
XU Yi, XU Guili, JIANG Guancheng.Synthesis and application of an environmentally friendly modified bio-peptide shale inhibitor for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006
Citation: XU Yi, XU Guili, JIANG Guancheng.Synthesis and application of an environmentally friendly modified bio-peptide shale inhibitor for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006

Synthesis and Application of an Environmentally Friendly Modified Bio-Peptide Shale Inhibitor for Water Based Drilling Fluids

doi: 10.12358/j.issn.1001-5620.2022.03.006
  • Received Date: 2021-11-23
  • Rev Recd Date: 2022-01-11
  • Available Online: 2022-08-10
  • Publish Date: 2022-05-30
  • As more and more attentions have been paid to environment protection, the conventional polymer-sulfonate drilling fluid additives are gradually inevitably replaced by environmentally friendly additives. An environmentally friendly modified bio-peptide shale inhibitor, WNGT, has been developed based on molecular structure design of the bio-peptide gelatin. NMR spectrum of the modified gelatin has shown that two distinct new characteristic peaks appeared at the chemical shifts of 3.19 ppm and 4.12 ppm, respectively, indicating that the target product was successfully prepared. Results of the linear expansion test showed that the expansion length of the core tested with WNGT was shorter than two other additives, which were KCl and polyetheramine (PEA), at the same concentration, indicating that WNGT had the best inhibitive capacity in the three shale inhibitors. WNGT has the excellent clay hydration suppressing ability; at a concentration of 2%, the expansion length of the clay core in 24 hours was only 1.60 mm. Percent shale cuttings recovery of the modified gelatin was at least 95%, 46.05% higher than that of the non-modified gelatin. A bentonite slurry treated with 2% WNGT had its Zeta-potential decreased to −11.7 mV, meaning that WNGT can effectively neutralize the negative charges of the clay, thereby compressing the electric double layer and reducing the Zeta-potential of the clay. This WNGT shale inhibitor has been used on a well located in Chuanyu area, where the well penetrated the Shaximiao sandy shale formation. When the drilling fluid was treated with WNGT, its viscosity and gel strengths were reduced to some extent, and this effect was maintained for a long time, ensuring the successful drilling of the sandy shale formation with the water based polymer drilling fluid and the reducing of drilling cost.

     

  • loading
  • [1]
    庄庆佐,田玉芹,罗跃,等. 钻井液用MOF衍生物封堵-抑制剂的制备与性能[J]. 油田化学,2020,37(4):575-580.

    ZHUANG Qingzuo, TIAN Yuqin, LUO Yue, et al. Preparation and performance of MOF derivative plugging inhibitor for drilling fluids[J]. Oilfield Chemistry, 2020, 37(4):575-580.
    [2]
    田惠,张克正,史野,等. 低固相超高温钻井液的研究及应用[J]. 石油化工应用,2020,39(10):35-39. doi: 10.3969/j.issn.1673-5285.2020.10.008

    TIAN Hui, ZHANG Kezheng, SHI Ye, et al. Research and application of low-solid ultra-high temperature drilling fluid[J]. Petrochemical Industry Applications, 2020, 39(10):35-39. doi: 10.3969/j.issn.1673-5285.2020.10.008
    [3]
    张卫东,韩磊,王富华,等. 页岩抑制剂的抑制机理及研究进展[J]. 钻井液与完井液,2021,38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001

    ZHANG Weidong, HAN Lei, WANG Fuhua, et al. Inhibition mechanism and research progress of shale inhibitors[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001
    [4]
    蒋官澄,王凯,贺垠博,等. 基于超分子化学的钻井液新技术[J]. 中国石油大学学报(自然科学版),2020,44(4):111-120.

    JIANG Guancheng, WANG Kai, HE Yinbo, et al. New drilling fluid technology based on supramolecular chemistry[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4):111-120.
    [5]
    刘状, 查如俊, 邵斐, 等. 石油树脂钻井液用页岩抑制剂的研制[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 170-176.

    LIU Zhuang, ZHA Rujun, SHAO Fei, et al. Development of shale inhibitor for petroleum resie drilling fluid[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2021, 47(2): 170-176.
    [6]
    吴爽. 无土相氯化钾聚合物钻井液体系室内研究[J]. 内蒙古石油化工,2020,46(6):114-116. doi: 10.3969/j.issn.1006-7981.2020.06.045

    WU Shuang. Laboratory study on soil-free potassium chloride polymer drilling fluid system[J]. Inner Mongolia Petrochemical Industry, 2020, 46(6):114-116. doi: 10.3969/j.issn.1006-7981.2020.06.045
    [7]
    刘磊,赵广渊,郭宏峰,等. 胺类抑制剂ZC-NW的合成及评价[J]. 应用化工,2020,49(8):1953-1955.

    LIU Lei, ZHAO Guangyuan, GUO Hongfeng, et al. Synthesis and evaluation of amine inhibitor ZC-NW[J]. Applied Chemical Industry, 2020, 49(8):1953-1955.
    [8]
    张坤,王磊磊,董殿彬,等. 多元聚胺钻井液研究与应用[J]. 钻井液与完井液,2020,37(3):301-305. doi: 10.3969/j.issn.1001-5620.2020.03.006

    ZHANG Kun, WANG Leilei, DONG Dianbin, et al. Research and application of polyamine drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):301-305. doi: 10.3969/j.issn.1001-5620.2020.03.006
    [9]
    范劲,李俊材,王君. 强抑制聚合物体系解决川渝地区大井眼段钻井液回收利用率低的问题[J]. 钻井液与完井液,2020,37(3):313-318,326. doi: 10.3969/j.issn.1001-5620.2020.03.008

    FAN Jin, LI Juncai, WANG Jun. Strongly inhibited polymer system to solve the problem of low recovery rate of drilling fluid in large wellbore sections in Sichuan-Chongqing area[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):313-318,326. doi: 10.3969/j.issn.1001-5620.2020.03.008
    [10]
    周芳芳,王金树. 低聚胺盐抑制剂的合成及性能评价[J]. 化学工程与装备,2020(5):15-17.

    ZHOU Fangfang, WANG Jinshu. Synthesis and performance evaluation of oligoamine salt inhibitors[J]. Chemical Engineering and Equipment, 2020(5):15-17.
    [11]
    秦国川,何淼,许明标,等. 国内外页岩水基钻井液用抑制剂研究进展[J]. 应用化工,2020,49(7):1802-1806. doi: 10.3969/j.issn.1671-3206.2020.07.042

    QIN Guochuan, HE Miao, XU Mingbiao, et al. Research progress of inhibitors for shale water-based drilling fluids at home and abroad[J]. Applied Chemical Industry, 2020, 49(7):1802-1806. doi: 10.3969/j.issn.1671-3206.2020.07.042
    [12]
    陈俊斌,明显森,陶怀志,等. 页岩气水基钻井液在YS-AB井现场试验与认识[J]. 钻采工艺,2021,44(4):98-103. doi: 10.3969/J.ISSN.1006-768X.2021.04.23

    CHEN Junbin, MING Xiansen, TAO Huaizhi, et al. Field test and understanding of shale gas water-based drilling fluid in YS-AB well[J]. Drilling and Production Technology, 2021, 44(4):98-103. doi: 10.3969/J.ISSN.1006-768X.2021.04.23
    [13]
    孙晨. 高性能水基钻井液技术发展分析[J]. 化工管理,2021(18):107-108.

    SUN Chen. Analysis on the development of high-performance water-based drilling fluid technology[J]. Chemical Industry Management, 2021(18):107-108.
    [14]
    刘自广,宋丰博,尤志良,等. 基于改性植物多酚的高温高密度环保型水基钻井液[J]. 钻井液与完井液,2021,38(3):285-291.

    LIU Ziguang, SONG Fengbo, YOU Zhiliang, et al. High temperature, high density and environmentally friendly water-based drilling fluid based on modified plant polyphenols[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):285-291.
    [15]
    陈斌,周姗姗,赵远远,等. 适用于大位移井新型水基钻井液室内研究[J]. 钻井液与完井液,2021,38(1):42-46.

    CHEN Bin, ZHOU Shanshan, ZHAO Yuanyuan, et al. Laboratory study of a new type of water-based drilling fluid suitable for extended reach wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):42-46.
    [16]
    杨建民,刘伟,熊小伟,等. 页岩气井环保型强抑制水基钻井液体系研究与应用[J]. 钻采工艺,2020,43(2):107-110. doi: 10.3969/J.ISSN.1006-768X.2020.02.29

    YANG Jianmin, LIU Wei, XIONG Xiaowei, et al. Research and application of environmentally friendly and strongly inhibited water-based drilling fluid system for shale gas wells[J]. Drilling and Production Technology, 2020, 43(2):107-110. doi: 10.3969/J.ISSN.1006-768X.2020.02.29
    [17]
    罗健生,蒋官澄,王国帅,等. 一种无氯盐环保型强抑制水基钻井液体系[J]. 钻井液与完井液,2019,36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012

    LUO Jiansheng, JIANG Guancheng, WANG Guoshuai, et al. A non-chlorine salt environmentally friendly and strongly inhibited water-based drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012
    [18]
    刘政,李俊才,李轩,等. CQH-M2高性能水基钻井液及其在威204H11-4井的应用[J]. 钻井液与完井液,2018,35(3):32-36. doi: 10.3969/j.issn.1001-5620.2018.03.005

    LIU Zheng, LI Juncai, LI Xuan, et al. CQH-M2 high-performance water-based drilling fluid and its application in well Wei 204H11-4[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):32-36. doi: 10.3969/j.issn.1001-5620.2018.03.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (642) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return