Volume 39 Issue 1
May  2022
Turn off MathJax
Article Contents
LI Xiaolin, LI Jianhua, YANG Hongbin, et al.Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(1):76-81 doi: 10.12358/j.issn.1001-5620.2022.01.013
Citation: LI Xiaolin, LI Jianhua, YANG Hongbin, et al.Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(1):76-81 doi: 10.12358/j.issn.1001-5620.2022.01.013

Study on Thermally Viscosifying Copolymer as a High Temperature Stabilizer for High Density Cement Slurries

doi: 10.12358/j.issn.1001-5620.2022.01.013
  • Received Date: 2021-09-02
  • Accepted Date: 2021-09-02
  • Rev Recd Date: 2021-10-12
  • Publish Date: 2022-05-06
  • To dela with the loss of settling stability of cement slurries at elevated temperatures, a high temperature high density cement slurry stabilizer based on a thermally viscosifying copolymer was developed. A new hydrophobic monomer was introduced into the molecule of the thermally viscosifying copolymer. To understand the thermal viscosification mechanisms of this copolymer, the rheology of the copolymer solution was tested at different temperatures. The apparent viscosity of the copolymer solution increases with temperature, and reaches its maximum value at 115-125 ℃. Continued increasing the temperature, the apparent viscosity of the copolymer solution was slightly decreasing, however, the apparent viscosity of the solution at 150 ℃ was still two to four times the apparent viscosity of the solution at the beginning of the test, indicating that the copolymer has good thermally viscosifying effect. A high temperature suspending stabilizer for high density cement slurries was developed with this copolymer and other additives. In laboratory experiment, the effects of the stabilizer on the settling stability of cement slurries were evaluated, the rheology, filter loss, free water content, thickening performance as well as compressive strength of the cement slurry containing the stabilizer were measured. The experimental results showed that a 2.5 g/cm3 cement slurry treated with 1% stabilizer had its differential density at 150 ℃ reduced from 0.58 g/cm3 to 0.07 g/cm3, and the differential density of the corresponding set cement reduced to less than 0.08 g/cm3. The thinning effect of the cement slurry at elevated temperatures was mitigated and the stability of the cement slurry was significantly improved. After treatment with the stabilizer, the high density cement slurry had low filter loss and free water content, and the stabilizer had only minor effect on the thickening time, rheology and compressive strength of the cement slurry. The overall properties of the cement slurry treated with the stabilizer have satisfied the needs of field operations.

     

  • loading
  • [1]
    张光亚,马锋,梁英波,等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报,2015,36(9):1156-1164.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exporation[J]. Acta Ptrolei Sinical, 2015, 36(9):1156-1164.
    [2]
    孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6):641-648. doi: 10.11698/PED.2013.06.01

    SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6):641-648. doi: 10.11698/PED.2013.06.01
    [3]
    贾承造,庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报,2015,36(12):1457-1469. doi: 10.7623/syxb201512001

    JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hadrocarbon geological theories[J]. Acta Ptrolei Sinical, 2015, 36(12):1457-1469. doi: 10.7623/syxb201512001
    [4]
    邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006

    ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006
    [5]
    郭锦棠,卢海川,靳建州,等. 新型耐温抗盐降失水剂的合成与测试[J]. 天津大学学报,2012,45(11):1001-1006.

    GUO Jintang, LU Haichuan, JIN Jianzhou, et al. Synthesis and test of novel temperature-resistant and salt-tolerant fluid loss additive[J]. Journal of Tianjin University, 2012, 45(11):1001-1006.
    [6]
    邹建龙,屈建省,许涌深,等. 油井水泥缓凝剂研究进展[J]. 钻井液与完井液,2008,25(4):386-390.

    ZOU Jianlong, QU Jiansheng, XU Yongshen, et al. Developments of retarders for oil well cementing compositions[J]. Drilling Fluid & Completion Fluid, 2008, 25(4):386-390.
    [7]
    凌勇,刘文明,王翔宇,等. 新型聚羧酸减阻剂的研究与应用[J]. 钻井液与完井液,2019,36(6):742-748.

    LING Yong, LIU Wenming, WANG Xiangyu, et al. Study and application of a new poly carboxylic acids drag reducer[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):742-748.
    [8]
    吴宁,张琪,曲占庆. 固体颗粒在液体中沉降速度的计算方法评述[J]. 石油钻采工艺,2000,22(2):51-53,56. doi: 10.3969/j.issn.1000-7393.2000.02.013

    WU Ning, ZHANG Qi, QU Zhanqing. Evaluation on calculation methods of solid particle setting velocity in fluid[J]. Oil Drilling & Production Technology, 2000, 22(2):51-53,56. doi: 10.3969/j.issn.1000-7393.2000.02.013
    [9]
    吴乐,徐同台,韩斅,等. 黄原胶高温稳定性的影响因素[J]. 钻井液与完井液,2011,28(6):77-80,97. doi: 10.3969/j.issn.1001-5620.2011.06.023

    WU Le, XU Tongtai, HAN Xiao, et al. Research on high temperature stability effects of xanthan gum[J]. Drilling Fluid & Completion Fluid, 2011, 28(6):77-80,97. doi: 10.3969/j.issn.1001-5620.2011.06.023
    [10]
    HEYMANN E. Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water[J]. Transactions of the Faraday Society, 1935, 31:846-864. doi: 10.1039/tf9353100846
    [11]
    L'ALLORET F, MAROY P, HOURDET D, et al. Reversible thermoassociation of water-soluble polymers thermoassociation réversible de polymères hydrosolubles[J]. Oil & Gas Science and Technology, 1997, 52(2):117-128.
    [12]
    张现斌,李欣,陈安亮,等. 钻井液用抗高温聚合物增黏剂的制备与性能评价[J]. 油田化学,2020,37(1):1-6,16.

    ZHANG Xianbin, LI Xin, CHEN Anliang, et al. Preparation and performance evaluation of polymeric viscosifier with thermal resistance for water-based drilling fluid[J]. Oilfield Chemistry, 2020, 37(1):1-6,16.
    [13]
    郭锦棠,董美美,于永金,等. 温敏增稠固井水泥外加剂的合成与性能研究[J]. 天津大学学报:自然科学与工程技术版,2016,49(6):597-502.

    GUO Jintang, DONG Meimei, YU Yongjin, et al. Synthesis and property of thermo-thickening oil well cement additives[J]. Journal of Tianjin University (Science and Technology), 2016, 49(6):597-502.
    [14]
    刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液,2019,36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014

    LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014
    [15]
    SU XIN, FENG YUJUN. Thermoviscosifying smart polymers for oil and gas production: State of the art[J]. ChemPhysChem, 2018, 19(16):1944-1955.
    [16]
    宋元洪,杨远光,张玉平,等. 高密度水泥浆沉降稳定性评价方法探讨[J]. 钻井液与完井液,2015,32(6):54-56.

    SONG Yuanhong, YANG Yuanguang, ZHANG Yuping, et al. Determination of parameters controlling sedimentation stability of high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):54-56.
    [17]
    王成文,王桓,薛毓铖,等. 高密度水泥浆高温沉降稳定调控热增黏聚合物研制与性能[J]. 石油学报,2020,41(11):1416-1424.

    WANG Chengwen, WANG Huan, XUE Yucheng, et al. Development and performance of thermo-viscosifying polymer for high temperature sedimentation control of high density cement slurry[J]. Acta Petrolei Sinica, 2020, 41(11):1416-1424.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (537) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return