Volume 38 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
PU Jun, HUANG Ting, LI Jianhui, et al.Preparation of crosslinking agent for guar gum fracturing fluids and study on its performance in statically suspending sands [J]. Drilling Fluid & Completion Fluid,2021, 38(6):790-794 doi: 10.12358/j.issn.1001-5620.2021.06.021
Citation: PU Jun, HUANG Ting, LI Jianhui, et al.Preparation of crosslinking agent for guar gum fracturing fluids and study on its performance in statically suspending sands [J]. Drilling Fluid & Completion Fluid,2021, 38(6):790-794 doi: 10.12358/j.issn.1001-5620.2021.06.021

Preparation of Crosslinking Agent for Guar Gum Fracturing Fluids and Study on Its Performance in Statically Suspending Sands

doi: 10.12358/j.issn.1001-5620.2021.06.021
  • Received Date: 2021-08-01
  • Publish Date: 2021-11-30
  • To improve the movement of sand carrying guar gum fracturing fluids in fracturing operation, a nanometer ZrO2 crosslinking agent TCL was developed using nanometer ZrO2 and 3,5-dihydroxy pentanoic acid. The effects of the concentrations of TCL, guar gum, 3,5- dihydroxy pentanoic acid and proppant on the static suspending stability of particles were investigated. It was found that after shearing at 180 °C and 190 s−1 for 80 min, the mass of particles settled in a fracturing fluid treated with 0.4% TCL and 0.3% guar gum can be limited to 0.3 g, much less than the 2.6 g particles settled in a fracturing fluid treated with the commercially available ZAB crosslinking agent. Higher treatment of the crosslinking agent TCL and guar gum as well as higher density hydroxide groups on the side chain of the crosslinking agent are all beneficial to the suspending capacity of the fracturing fluid, while the amount of the 3,5- dihydroxy pentanoic acid greater than 38 g does not have a great impact on the sand suspension of the fracturing fluid. The content of TCL in a fracturing fluid has the greatest impact on the suspension of the proppant particles in that fracturing fluid, reducing the mass of the settled sands by 6.6 g, indicating that TCL has excellent sand suspension capacity.

     

  • loading
  • [1]
    肖舒月. 非常规致密气藏中地下3D储层模型的3D水力压裂模拟案例研究[J]. 天然气勘探与开发,2020,43(2):64-65.

    XIAO Shuyue. 3D hydraulic fracturing simulation case study of underground 3D reservoir model in unconventional tight gas reservoir[J]. Natural Gas Exploration and Development, 2020, 43(2):64-65.
    [2]
    郭旭升,胡东风,黄仁春,等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业,2020,40(5):1-14.

    GUO Xuesheng, HU Dongfeng, HUANG Renchun, et al. Progress and prospect of deep ultra deep gas exploration in Sichuan Basin[J]. Natural Gas Industry, 2020, 40(5):1-14.
    [3]
    王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液,2020,37(2):185-191.

    WANG Xiuying, WU Tong, CAI Jun, et al. Stress sensitivity of shale oil reservoir in Raoyang sag[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):185-191.
    [4]
    夏亮亮,周明,张灵,等. 两性/阴离子表面活性剂清洁压裂液性能评价[J]. 油田化学,2015,32(3):341-344.

    XIA Liangliang, ZHOU Ming, ZHANG Ling, et al. Performance evaluation of amphoteric / anionic surfactant clean fracturing fluid[J]. Oilfield Chemistry, 2015, 32(3):341-344.
    [5]
    ALZOBAIDI S, LEE J, JIRIES S, et al. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing[J]. Journal of Colloid and Interface Science, 2018, 526(1):253-267.
    [6]
    张文胜,任占春,秦利平,等. 水基植物胶压裂液用交联剂类型及性能[J]. 钻井液与完井液,1997(4):22-24.

    ZHANG Wensheng, REN Zhanchun, QIN Liping, et al. Types and properties of crosslinking agents for water-based vegetable gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 1997(4):22-24.
    [7]
    江万雄. 压裂用有机锆交联剂的制备及性能评价[D]. 成都: 西南石油大学, 2016.

    JIANG Wanxiong. Preparation and performance evaluation of organic zirconium crosslinking agent for fracturing [D]. Chengdu: Southwest Petroleum University, 2016.
    [8]
    王彦玲,张传保,戎旭峰,等. 压裂用纳米交联剂的研究进展[J]. 科学技术与工程,2020,20(3):874-882.

    WANG Yanling, ZHANG Chuanbao, RONG Xufeng, et al. Research progress of nano crosslinking agent for fracturing[J]. Science Technology and Engineering, 2020, 20(3):874-882.
    [9]
    XU K, GUAN B S. Study on synthesis and properties of nano-organic boron cross-linked agent[C]. IOP Conference Series: Materials Science and Engineering. Beijing: AEIC, 2018, 423(1) : 1397-1407.
    [10]
    许波. 金属氧化物纳米粒子交联的高强度纳米复合水凝胶的制备和性能研究 [D]. 北京: 北京理工大学, 2015.

    XU Bo. Preparation and properties of high strength nano composite hydrogel crosslinked by metal oxide nanoparticles [D]. Beijing: Beijing University of Technology, 2015.
    [11]
    陈艳秋. 井筒内超临界CO2压裂液流动及携砂运移规律研究[D]. 东北石油大学, 2018.

    CHEN Yanqiu. Study on flow and sand carrying migration of supercritical CO2 fracturing fluid in wellbore[D]. Northeast Petroleum University, 2018.
    [12]
    SUN X. , LIANG X., WANG S., et al. Experimental study on the rheology of CO2 viscoelastic surfactant foam fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2014, 119(1):104-111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (513) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return