Volume 38 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
GUO Xing, SUN Xiao, MU Jingfu, et al.Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid,2021, 38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020
Citation: GUO Xing, SUN Xiao, MU Jingfu, et al.Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid,2021, 38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020

Heat Transfer in Wellbores Fractured with Supercritical CO2 Fracturing Fluid

doi: 10.12358/j.issn.1001-5620.2021.06.020
  • Received Date: 2021-08-30
  • Accepted Date: 2021-04-22
  • Publish Date: 2021-11-30
  • To optimize the techniques and operational parameters of well fracturing with supercritical CO2 fracturing fluid, a mathematical model coupling the pressure drawdown and heat transfer of a well fractured with CO2 fracturing fluid is established based on the physical properties of CO2, taking into account the mutual influence and interaction between the changes in temperature and pressure of the well and the properties of CO2. The accuracy of the model is verified with data collected from field fracturing operations. Using this model, the effect of coupled temperature and pressure is calculated, and heat transfer pattern in the wellbore analyzed. Laboratory studies have shown that the temperature distribution inside the tubing is significantly lower than the in-situ formation temperature at different flow rates of the fracturing fluid. With the increase in flow rate, the wellbore temperature is first decreasing and then increasing. The bottomhole temperature is increasing with the increase in the temperature of the injected fluid, and the change in the bottomhole temperature becomes more significant with the temperature of the injected fluid at higher flow rates. Increase in the wellhead pressure has little, if any, influence on the bottomhole temperature, and its effect can be ignored in engineering calculations. The bottom hole temperature is always decreasing with time at different flow rates, and the amplitude of this temperature decrease is gradually decreasing with time. The tubing temperature can be significantly reduced if drag reducer is added into the fracturing fluid. At any flow rate, the changes in the wellbore temperatures are becoming smaller in a wellbore fractured with a fracturing fluid containing drag reducers. This research has important guiding significance to CO2 fracturing design optimization and field operations.

     

  • loading
  • [1]
    金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):5-12.

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3):5-12.
    [2]
    孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5):569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004
    [3]
    LEE J Y, WEINGARTEN M, GE S. Induced seismicity: the potential hazard from shale gas development and CO2, geologic storage[J]. Geosciences Journal, 2016, 20(1):137-148. doi: 10.1007/s12303-015-0030-5
    [4]
    韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005.

    HAN Buxing. Science and technology of supercritical fluid[M]. Beijing: China Petrochemical Press, 2005.
    [5]
    李小江,李根生,王海柱,等. 超临界CO2压裂井筒流动模型及耦合求解[J]. 中国石油大学学报(自然科学版),2018,42(226):93-100.

    LI Xiaojiang, LI Gensheng, WANG Haizhu, et al. A wellbore flow model and coupling solution for supercritical CO2 fracturing[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(226):93-100.
    [6]
    李海涛,杨帆,温丽娟. 小直径套管压裂工艺技术的应用[J]. 非常规油气,2018(3):74-79. doi: 10.3969/j.issn.2095-8471.2018.03.012

    LI Haitao, YANG Fan, WEN Lijuan. Application of small diameter casing fracturing technology[J]. Unconventional Oil & Gas, 2018(3):74-79. doi: 10.3969/j.issn.2095-8471.2018.03.012
    [7]
    GUO X, NI H, LI M, et al. Experimental study on the influence of supercritical carbon dioxide soaking pressure on the mechanical properties of shale[J]. Indian Geotechnical Journal, 2018, 48(2):384-391. doi: 10.1007/s40098-017-0289-8
    [8]
    刘秉谦,张遂安,李宗田,等. 压裂新技术在非常规油气开发中的应用[J]. 非常规油气,2015(2):78-86. doi: 10.3969/j.issn.2095-8471.2015.02.016

    LIU Bingqian, ZHANG Suian, LI Zongtian, et al. New stimulation technology for unconventional oil & gas development[J]. Unconventional Oil & Gas, 2015(2):78-86. doi: 10.3969/j.issn.2095-8471.2015.02.016
    [9]
    杨洪,李彦林,郭庆,等. VF-8清洁二氧化碳泡沫前置液压裂工艺在延长气井的应用[J]. 非常规油气,2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009

    YANG Hong, LI Yanlin, GUO Qing, et al. Application of VF-8 clean CO2 foam pad fluid fracturing technology to Yanchang gas wells[J]. Unconventional Oil & Gas, 2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009
    [10]
    王翠翠. 二氧化碳无水蓄能压裂参数优化[J]. 钻井液与完井液,2018,35(4):102-107. doi: 10.3969/j.issn.1001-5620.2018.04.019

    WANG Cuicui. Parameter optimization for CO2 water-free energy-storing fracturing[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):102-107. doi: 10.3969/j.issn.1001-5620.2018.04.019
    [11]
    王香增,孙晓,罗攀,等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏,2019,31(2):4-10.

    WANG Xiangzeng, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2):4-10.
    [12]
    张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究—以吉林油田外围井区为例[J]. 非常规油气,2015(5):55-60. doi: 10.3969/j.issn.2095-8471.2015.05.010

    ZHANG Hongni, CHEN Jingting. Insights into energy storage bulk fracturing technology for low-permeability oilfields—a case study of peripheral wellblock of Jilin oilfield[J]. Unconventional Oil & Gas, 2015(5):55-60. doi: 10.3969/j.issn.2095-8471.2015.05.010
    [13]
    孙晓,吴金桥,梁小兵,等. 液态CO2压裂井筒流动摩阻计算[J]. 大庆石油地质与开发,2016,35(5):96-99.

    SUN Xiao, WU Jinqiao, LIANG Xiaobing, et al. Friction resistance calculation of the borehole flow of liquid CO2 fractured wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(5):96-99.
    [14]
    官兵,李士斌,张立刚,等. 基于多场耦合效应的水平井压裂应力场分析[J]. 非常规油气,2017(3):103-109. doi: 10.3969/j.issn.2095-8471.2017.03.018

    GUAN Bing, LI Shibin, ZHANG Ligang, et al. Analysis of stress field of horizontal well fracturing based on multi field coupling effect[J]. Unconventional Oil & Gas, 2017(3):103-109. doi: 10.3969/j.issn.2095-8471.2017.03.018
    [15]
    李小江. 多场耦合下二氧化碳压裂流动传热与岩石损伤特性研究[D]. 北京: 中国石油大学(北京), 2018.

    LI Xiaojiang. Research on flow-heat transfer and rock damage during CO2 fracturing based on multiphysics coupling[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [16]
    倪红坚,郭兴,丁璐,等. 超临界二氧化碳浸泡对页岩力学性质影响的实验[J]. 中国石油大学学报(自然科学版),2019,43(2):77-84.

    NI Hongjian, GUO Xing, DING Lu, et al. Experiment on the influence of supercritical carbon dioxide soaking on the mechanical properties of shale[J]. Journal of China University of Petroleum(Edition of Natrural Science), 2019, 43(2):77-84.
    [17]
    郭建春,曾冀. 超临界二氧化碳压裂井筒非稳态温度-压力耦合模型[J]. 石油学报,2015,036(2):203-209.

    GUO Jianchun, ZENG Yi. A coupling model for wellbore transient temperature and pressure of fracturing with supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2015, 036(2):203-209.
    [18]
    程宇雄,李根生,王海柱,等. 超临界二氧化碳喷射压裂井筒流体相态控制[J]. 石油学报,2014,35(6):1182-1187. doi: 10.7623/syxb201406016

    CHENG Yuxiong, LI Gensheng, WANG Haizhu, et al. Phase control wellbore fluid during supercritical CO2 jet fracturing[J]. Acta Petrolei Sinica, 2014, 35(6):1182-1187. doi: 10.7623/syxb201406016
    [19]
    卢义玉,廖引,汤积仁,等. 页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报,2018,43(1):175-180.

    LU Yiyu, LIAO Yin, TANG Jiren, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing[J]. Journal of China Coal Society, 2018, 43(1):175-180.
    [20]
    SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-toint temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6):1509-1596. doi: 10.1063/1.555991
    [21]
    VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journalof Physical and Chemical Reference Data, 1990, 19(3):763-808. doi: 10.1063/1.555875
    [22]
    FENGHOUR A, WAKEHAMW A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Date, 1998, 27:31-44. doi: 10.1063/1.556013
    [23]
    汪志明, 崔海清, 何光渝. 流体力学[M]. 北京: 石油工业出版社, 2006.

    WANG Zhiming, CUI Haiqing, HE Guangyu. Fluid Mechanics[M]. Beijing: Petroleum Industry Press, 2006.
    [24]
    HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86-87:127-136. doi: 10.1016/j.petrol.2012.03.021
    [25]
    LI X, LI G, WANG H, et al. A unified model for wellbore flow and heat transfer in pure CO2 injection for geological sequestration, EOR and fracturing operations[J]. International Journal of Greenhouse Gas Control, 2017, 57:102-115. doi: 10.1016/j.ijggc.2016.11.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (550) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return