Volume 38 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Geng, LI Jun, LIU Gonghui, et al.A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid,2021, 38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006
Citation: ZHANG Geng, LI Jun, LIU Gonghui, et al.A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid,2021, 38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006

A Precise Model for Prediction of Annular ECD in Offshore HTHP Wells

doi: 10.12358/j.issn.1001-5620.2021.06.006
  • Received Date: 2021-07-31
  • Accepted Date: 2021-08-11
  • Publish Date: 2021-11-30
  • To accurately predict the annular ECD of high temperature high pressure (HTHP) wells, a model for calculating the density and rheology of drilling fluids was established through multielement nonlinear regression based on the rheological data of drilling fluids obtained under HTHP conditions. By coupling this model with the heat transfer model of wellbore, a precise prediction model for calculating the annular ECD of drilling fluids under HTHP conditions was established. Compared with the results obtained using the Drillbench software, this model gives results that are closer to the measured PWD data. Results from the model using actual operation data showed that during drilling operation, as the temperatures in the lower part of the annulus are continuously decreasing, the density and consistency index of the drilling fluid are continuously increasing, resulting in continuous increase in the annulus ECD. The flow rate of drilling fluid and the geothermal gradient are two key factors affecting annular ECD; the higher the flow rate, the higher the annular pressure losses, and hence the higher the annular ECD. Geothermal gradient directly affects the distribution of temperatures in the annulus, and increase in the geothermal gradient results in continuous decrease in annular ECD.

     

  • loading
  • [1]
    陈启军. 深水钻井环空ECD计算[J]. 科技信息,2009(29):66.

    CHEN Qijun. Calculation of ECD of annulus in deepwater drilling[J]. Science and Technology Information, 2009(29):66.
    [2]
    郭建华, 李黔, 高自力. 高温高压井ECD计算[J]. 天然气工业, 2006, 26(8): 72-74.

    GUO Jianhua, LI Qian, GAO Zili. ECD computation for HPHT wells [J]. Natural Gas Industry, 2006, 26(8): 72-74.
    [3]
    赵胜英,鄢捷年,李怀科,等. 高温深井钻井液当量循环密度预测模型[J]. 钻井液与完井液,2009,26(2):30-34. doi: 10.3969/j.issn.1001-5620.2009.02.009

    ZHAO Shengying, YAN Jienian, LI Huaike, et al. Prediction model of drilling fluid equivalent circulating density in high temperature deep well[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):30-34. doi: 10.3969/j.issn.1001-5620.2009.02.009
    [4]
    姚伟. 溢流条件下深水钻井当量循环密度计算[D]. 北京: 中国石油大学(北京), 2019.

    YAO Wei. Calculation of equivalent circulating density in deepwater drilling under overflow condition [D]. Beijing: China University of Petroleum (Beijing), 2019.
    [5]
    杨雪山,李胜,鄢捷年,等. 水平井井筒温度场模型及ECD的计算与分析[J]. 钻井液与完井液,2014,31(5):63-66. doi: 10.3969/j.issn.1001-5620.2014.05.018

    YANG Xueshan, LI Sheng, YAN Jienian, et al. Calculation and analysis of temperature field model and ECD in horizontal well[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):63-66. doi: 10.3969/j.issn.1001-5620.2014.05.018
    [6]
    王鄂川,樊洪海,党杨斌,等. 环空附加当量循环密度的计算方法[J]. 断块油气田,2014,21(5):671-674.

    WANG Echuan, FAN Honghai, DANG Yangbin, et al. Calculation method of additional equivalent circulating density[J]. Fault-Block Oil and Gas Field, 2014, 21(5):671-674.
    [7]
    李亚刚,冯辉,王文深,等. 基于井内实时水力学模型的环空压力计算及分析[J]. 探矿工程(岩土钻掘工程),2017,44(10):22-25.

    LI Yagang, FENG Hui, WANG Wenshen, et al. Calculation and analysis of annulus pressure based on real-time hydraulic model in well[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(10):22-25.
    [8]
    马光曦. 高温高压井ECD校核与控制技术研究[D]. 中国石油大学(北京), 2016.

    MA Guangxi. Research on ECD check and control technology in HP/HT wells [D]. China University of Petroleum (Beijing), 2016.
    [9]
    陈小龙. 大北-克深区块ECD预测方法研究与应用[D]. 北京: 中国石油大学(北京), 2016.

    CHEN Xiaolong. Research and application of ECD prediction method in Dabai-Keshen block [D]. Beijing: China University of Petroleum (Beijing), 2016.
    [10]
    王敏生,易灿,徐加放. 高温高压对超深井钻井液密度的影响[J]. 石油钻采工艺,2007,29(5):85-87. doi: 10.3969/j.issn.1000-7393.2007.05.024

    WANG Minsheng, YI Can, XU Jiafang. Effects on high temperature and pressure density[J]. Oil Drilling & Production Technology, 2007, 29(5):85-87. doi: 10.3969/j.issn.1000-7393.2007.05.024
    [11]
    罗宇维,朱江林,李东,等. 温度和压力对井内流体密度的影响[J]. 石油钻探技术,2012(2):34-38.

    LUO Yuwei, ZHU Jianglin, LI Dong, et al. The impact of temperature & pressure on borehole fluids density[J]. Petroleum Drilling Techniques, 2012(2):34-38.
    [12]
    王贵,蒲晓林,罗兴树. 水基钻井液高温高压密度特性研究[J]. 石油钻采工艺,2008,30(3):38-40. doi: 10.3969/j.issn.1000-7393.2008.03.009

    WANG Gui, PU Xiaolin, LUO Xingshu. Research on density of water-base drilling fluid at HTHP[J]. Oil Drilling & Production Technology, 2008, 30(3):38-40. doi: 10.3969/j.issn.1000-7393.2008.03.009
    [13]
    MCMORDIE W C, BLAND R G, HAUSER J M. Effect of temperature and pressure on the density of drilling fluids[C]// SPE Annual Technical Conference and Exhibition. 1982.
    [14]
    ZHOU H, NIU X, FAN H, et al. Effective calculation model of drilling fluids density and ESD for HTHP well while drilling[C]// IADC/SPE Asia Pacific Drilling Technology Conference. 2016.
    [15]
    OSMAN E A, AGGOUR M A. Determination of drilling mud density change with pressure and temperature made simple and accurate by ANN[C]//Middle East Oil Show. OnePetro, 2003.
    [16]
    王江帅,李军,柳贡慧,等. 循环钻进过程中井筒温度场新模型[J]. 断块油气田,2018,25(2):240-243.

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil and Gas Field, 2018, 25(2):240-243.
    [17]
    YANG H, LI J, LIU G, et al. Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling[J]. Energy, 2019, 179:138-153. doi: 10.1016/j.energy.2019.04.214
    [18]
    YANG H, LI J, LIU G, et al. Development of transient heat transfer model for controlled gradient drilling[J]. Applied Thermal Engineering, 2018, 148:331-339.
    [19]
    ZHANG Z, XIONG Y, GAO Y, et al. Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole[J]. Energy, 2018, 164:964-977. doi: 10.1016/j.energy.2018.09.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (631) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return