Volume 38 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
WANG Guoshuai, JIANG Guancheng, HE Yinbo, et al.Synthesis and evaluation of a ph stimulus-responsive high temperature-resistant reversible emulsifier[J]. Drilling Fluid & Completion Fluid,2021, 38(5):552-559 doi: 10.12358/j.issn.1001-5620.2021.05.003
Citation: WANG Guoshuai, JIANG Guancheng, HE Yinbo, et al.Synthesis and evaluation of a ph stimulus-responsive high temperature-resistant reversible emulsifier[J]. Drilling Fluid & Completion Fluid,2021, 38(5):552-559 doi: 10.12358/j.issn.1001-5620.2021.05.003

Synthesis and Evaluation of A pH Stimulus-responsive High Temperature-resistant Reversible Emulsifier

doi: 10.12358/j.issn.1001-5620.2021.05.003
  • Received Date: 2021-07-01
  • Accepted Date: 2021-06-17
  • Publish Date: 2021-09-30
  • The oil-based drilling fluid presences the problems of difficulty to remove filter cake and treat oily cuttings. Based on the intelligent regulation mechanism of the pH stimulus-responsive emulsifier on the emulsion type, a pH-responsive reversible emulsifier RE-HT was synthesized through Hoffman reaction with 1-Bromo long-chain Alkane R and Diethanolamine to solve these problems. And a reversible emulsion drilling fluid was developed by utilizing it as the core agent. The infrared spectroscopy analysis and emulsion acid/base thixotropy test showed that the synthesized product contains the pH-responsive tertiary amine group and can be flexibly switched between water-in-oil emulsifier and oil-in-water emulsifier under acid/alkali stimulation. Thermogravimetric analysis and electric stability tests showed that the initial thermal decomposition temperature of RE-HT in an air atmosphere is as high as 257 ℃, and the demulsification voltage of the basic emulsion with 5% RE-HT is 1098 V after aging at 220 ℃. This indicated that it has good thermal stability and emulsifying performance. The developed reversible emulsion drilling fluid has good basic performance and can tolerate high-temperature up to 200 ℃, saturated saltwater contamination up to 15%, and drilling cuttings contamination up to 15%. The filter cake removal rate after pickling is 98.98%, the oil content of cuttings after pickling is less than 1%, EC50 is 2.05×105 mg/L, meeting the cuttings discharge standard and exhibiting a good application prospect in complex deep wells drilling.p wells drilling.

     

  • loading
  • [1]
    覃勇,蒋官澄,邓正强,等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液,2016,33(1):6-10.

    QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evaluation of a primary emulsifier for high temperature oil base drilling fluidr[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):6-10.
    [2]
    王星媛,陆灯云,吴正良. 抗220 ℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.

    WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220 ℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560.
    [3]
    霍锦华,张瑞,杨磊,等. CTAB诱导膨润土乳液转相机理及其在可逆乳化油基钻井液中的应用[J]. 石油学报,2018,39(1):122-128. doi: 10.7623/syxb201801012

    HUO Jinhua, ZHANG Rui, YANG Lei, et al. Phase transition mechanism of CTAB inducing bentonite emulsion and its application in reversible emulsification oil-based drilling fluids[J]. Acta Petrolei Sinica, 2018, 39(1):122-128. doi: 10.7623/syxb201801012
    [4]
    黄贤斌,蒋官澄,万伟,等. 含油钻屑微乳状液除油剂的研制及机理[J]. 石油学报,2016,37(6):815-820.

    HUANG Xianbin, JIANG Guancheng, WAN Wei, et al. Preparation and mechanism of microemulsion deoiler for oily cuttings[J]. Acta Petrolei Sinica, 2016, 37(6):815-820.
    [5]
    黄维巍,周泽军,何勇,等. 页岩气开发油基钻屑真空热解资源化处理[J]. 环境工程学,2017,11(8):4783-4788.

    HUANG Weiwei, ZHOU Zejun, HE Yong, et al. Resources utilization of oil-based drilling cuttings vacuum pyrolysising in shale gas developing[J]. Chinese Journal of Environmental Engineering, 2017, 11(8):4783-4788.
    [6]
    黄志强,徐子扬,权银虎,等. 锤磨热解析处理油基钻井液钻屑的效果评价[J]. 天然气工业,2018,38(8):83-90. doi: 10.3787/j.issn.1000-0976.2018.08.012

    HUANG Zhiqiang, XU Ziyan, QUAN Yinhu, et al. Effect evaluation of hammer-milling thermal desorption technology on oil-based drilling fluid cuttings[J]. Natural Gas Industry, 2018, 38(8):83-90. doi: 10.3787/j.issn.1000-0976.2018.08.012
    [7]
    PATEL, A D. Reversible invert emulsion drilling fluids: a quantum leap in technology[J]. SPE Drill & Completion, 1999, 14(4):274-279.
    [8]
    任妍君,蒋官澄,张弘,等. 基于乳状液转相技术的钻井液新体系室内研究[J]. 石油钻探技术,2013,41(4):87-91. doi: 10.3969/j.issn.1001-0890.2013.04.019

    REN Yanjun, JIANG Guancheng, ZHANG Hong, et al. Laboratory study of a novel drilling fluid based on emulsion phase diversion technology[J]. Petroleum Drilling Techniques, 2013, 41(4):87-91. doi: 10.3969/j.issn.1001-0890.2013.04.019
    [9]
    武文涛,张永民,刘雪锋. 叔胺基CO2开关表面活性剂的合成及性能研究[J]. 日用化学工业,2016,46(5):251-256.

    WU Wentao, ZHANG Yongmin, LIU Xuefeng. Synthesis and performance of tertiary amine-based CO2 switchable surfactant[J]. China Surfactant Detergent & Cosmetics, 2016, 46(5):251-256.
    [10]
    REN Yanjun, JIANG Guancheng, ZHANG Zhihang, et al. Phase inversion pathways of emulsions stabilized by ethoxylated alkylamine surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 95-102.
    [11]
    刘满辉. 多甲氧基黄酮羟乙基和胺烷基衍生物的合成研究[D]. 长沙: 湖南大学, 2018.

    LIU Manhui. Study on the synthesis of polymethoxy flavonoid hydroxyethyl and amino alkyl derivatives[D]. Changsha: Hunan University, 2018.
    [12]
    周家华,崔英德. 表面活性剂HLB值的分析测定与计算Ⅰ. HLB值的分析测定[J]. 精细石油化工,2001(2):11-14. doi: 10.3969/j.issn.1003-9384.2001.02.004

    ZHOU Jiahua, CUI Yingde. Analysis, determination, and calculation of HLB value of surfactant Ⅰ. Analysis and determination of HLB value[J]. Speciality Petrochemicals, 2001(2):11-14. doi: 10.3969/j.issn.1003-9384.2001.02.004
    [13]
    刘明华,胡小燕,国安平,等. 油基钻井液用抗高温乳化剂的合成及性能[J]. 精细石油化工进展,2017,18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003

    LIU Minghua, HU Xiaoyan, GUO Anping, et al. Synthesis and performance of anti-high temperature emulsifier for oil-based drilling fluid[J]. Speciality Petrochemicals, 2017, 18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003
    [14]
    邓小刚,罗飞,马丽华,等. 磺基甜菜碱的合成及其在水包油乳化钻井液中的应用[J]. 钻井液与完井液,2017,34(3):33-38. doi: 10.3969/j.issn.1001-5620.2017.03.006

    DENG Xiaogang, LUO Fei, MA Lihua, et al. Sulfonated betaine: synthesis and application in oil-in-water emulsions[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):33-38. doi: 10.3969/j.issn.1001-5620.2017.03.006
    [15]
    WANG Fang, PI Jing, LIU Jingyu, et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability[J]. Journal of Colloid and Interface Science, 2019, 557:65-75. doi: 10.1016/j.jcis.2019.08.114
    [16]
    LI Hao, CENGIZ Yegin, CHENG Chen, et al. pH-Responsive emulsions with supramolecularly assembled Shells[J]. Industrial & Engineering Chemistry Research, 2018, 57(28):9231-9239.
    [17]
    杜坤. 油基钻井液新型高效乳化剂的研制与评价[J]. 钻井液与完井液,2020,37(5):555-560.

    DU Kun. Development and evaluation of a new high efficiency emulsifier for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):555-560.
    [18]
    周浩. 含油钻屑的热解特性研究[D]. 南京: 东南大学, 2017.

    ZHOU Hao. Study on the pyrolysis characteristics of oily cuttings[D]. Nanjing: Southeast University, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (583) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return