Volume 38 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
MA Yongle, ZHANG Yong, LIU Xiaodong, et al.A drilling fluid which inhibits formation of natural gas hydrate at low temperatures in offshore drilling[J]. Drilling Fluid & Completion Fluid,2021, 38(5):544-551 doi: 10.12358/j.issn.1001-5620.2021.05.002
Citation: MA Yongle, ZHANG Yong, LIU Xiaodong, et al.A drilling fluid which inhibits formation of natural gas hydrate at low temperatures in offshore drilling[J]. Drilling Fluid & Completion Fluid,2021, 38(5):544-551 doi: 10.12358/j.issn.1001-5620.2021.05.002

A Drilling Fluid Which Inhibits Formation of Natural Gas Hydrate at Low Temperatures in Offshore Drilling

doi: 10.12358/j.issn.1001-5620.2021.05.002
  • Received Date: 2021-04-26
  • Publish Date: 2021-09-30
  • A low temperature inhibitive drilling fluid was developed for use in offshore natural gas hydrate drilling to deal with several technical challenges such as low temperature in deep waters, narrow safe drilling window in shallow formations, inhibition of the formation and decomposition of gas hydrate and requirements on environment protection etc. The low temperature inhibitive drilling fluid was formulated with a gas hydrate inhibitor, which was developed by compounding the thermodynamic inhibitor KCl and a kinetic inhibitor A2, and high molecular weight additives with superior low temperature rheology stability. This drilling fluid has good rheology. The bentonite content, API filter loss and density of this drilling fluid are 2%, 4 mL and 1.07 g/cm3, respectively. It has a stable low temperature rheology: the ECD at 4 ℃ is only 0.004 g/cm3 (max.) higher than that of the drilling fluid at 25 ℃. This excellent rheological property is beneficial to the borehole wall stability and borehole cleaning in drilling the shallow formations in deep waters with narrow safe drilling windows. This drilling fluid also shows excellent performance in inhibiting the formation of gas hydrate. At 4 ℃ and 20 MPa, gas hydrate is completely inhibited in 20 h. After aging for 10 d and being contaminated with drilled cuttings, the drilling fluid still retains good inhibitive capacity, and is able to decompose the gas hydrate formed. The contents of heavy metals in the additives used to formulate the drilling fluid meet the requirements of relevant standards, the EC50 and LC50 of the drilling fluid are all greater than 30 000 mg/L, satisfying the needs of first-level environment protection in the sea area in China. The overall technical performance of this drilling fluid satisfies the technical requirements of drilling natural gas hydrate in offshore area.

     

  • loading
  • [1]
    朱秋格. 天然气水合物——21世纪的潜在能源[J]. 特种油气藏,2004,11(1):5-8. doi: 10.3969/j.issn.1006-6535.2004.01.002

    ZHU Qiuge. Natural gas hydrate——alternative energy in the 21st century[J]. Special Oil and Gas Reservoirs, 2004, 11(1):5-8. doi: 10.3969/j.issn.1006-6535.2004.01.002
    [2]
    李丽松,苗琦. 天然气水合物勘探开发技术发展综述[J]. 天然气与石油,2017,32(1):67-71.

    LI Lisong, MIAO Qi. Overview of development of gas hydrate exploration and development technology[J]. Natural Gas and Oil, 2017, 32(1):67-71.
    [3]
    涂运中. 海洋天然气水合物地层钻井的钻井液研究[D]. 武汉: 中国地质大学, 2010.

    TU Yunzhong. The study on drilling fluid for drilling in marine natural gas hydrate bearing formations[D]. Wuhan: China University of Geosciences, 2010.
    [4]
    MATSUZAWA M, UMEZU S, YAMAMOTO K. Evaluation of experiment program 2004: Natural hydrate exploration campaign in the Nankai-Trough offshore Japan[C]. IADC/SPE, 98960, 2006.
    [5]
    张凌,蒋国盛,蔡记华,等. 低温地层钻进特点及其钻井液技术现状综述[J]. 钻井液与完井液,2006,23(4):69-72,93. doi: 10.3969/j.issn.1001-5620.2006.04.021

    ZHANG Ling, JIANG Guosheng, CAI Jihua, et a1. Overview of low temperature formation characteristics while drilling and available drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(4):69-72,93. doi: 10.3969/j.issn.1001-5620.2006.04.021
    [6]
    张寒松. 清洁能源可燃冰研究现状与前景[J]. 应用能源技术,2014(8):54-58. doi: 10.3969/j.issn.1009-3230.2014.08.014

    ZHANG Hansong. Research situation and prospects of flammable ice as a clean energy[J]. Applied Energy Technology, 2014(8):54-58. doi: 10.3969/j.issn.1009-3230.2014.08.014
    [7]
    刘华,李相方,夏建蓉,等. 关于天然气水合物钻采工艺技术进展的研究[J]. 钻采工艺,2006,29(5):54-57. doi: 10.3969/j.issn.1006-768X.2006.05.019

    LIU Hua, LI Xiangfang, XIA Jianrong, et al. Research on the progress of drilling and production technology of natural gas hydrate[J]. Drilling & Production Technology, 2006, 29(5):54-57. doi: 10.3969/j.issn.1006-768X.2006.05.019
    [8]
    宫智武,张亮,程海清,等. 海底天然气水合物分解对海洋钻井安全的影响[J]. 石油钻探技术,2015,43(4):19-24.

    GONG Zhiwu, ZHANG Liang, CHENG Haiqing, et al. The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J]. Petroleum Drilling Techniques, 2015, 43(4):19-24.
    [9]
    邱存家,陈礼仪,朱宗培,等. 天然气水合物钻探中钻井液的使用[J]. 探矿工程,2002,36(4):36-37.

    QIU Cunjia, CHEN Liyi, ZHU Zongpei, et al. The use of drilling fluid in gas hydrate drilling[J]. Exploration Engineering, 2002, 36(4):36-37.
    [10]
    徐家放,邱正松,毕波,等. 深水水基钻井液的配方优选与性能评价[J]. 钻井液与完井液,2011,28(4):4-7. doi: 10.3969/j.issn.1001-5620.2011.04.002

    XU Jiafang, QIU Zhengsong, BI Bo, et al. Formulation optimization and performance evaluation of deepwater water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2011, 28(4):4-7. doi: 10.3969/j.issn.1001-5620.2011.04.002
    [11]
    涂运中,蒋国盛,张昊,等. 海洋天然气水合物钻井的硅酸盐钻井液研究[J]. 现代地质,2009,23(2):224-228. doi: 10.3969/j.issn.1000-8527.2009.02.005

    TU Yunzhong, JIANG Guosheng, ZHANG Hao, et al. Study on silicate drilling fluid for drilling in marine gas hydrate bearing sediments[J]. Geoscience, 2009, 23(2):224-228. doi: 10.3969/j.issn.1000-8527.2009.02.005
    [12]
    TAN C P. FREIJ-AYOUB R, CLENNELL M B, et a1. Managing wellbore instability risk in gas-hydrate beating sediments[J]. SPE, 9296, 0:2005.
    [13]
    RODGER P M. Simulation of surface melting and inhibition in clathrate hydrates[M]. 8th International Symposium on Molecular Recognition and Inclusion. Ottawa: Carleton University, 1994.
    [14]
    GEORGE D S, HYNDMAN R D. The challenge of deep ocean drilling for natural gas hydrate[J]. Geoscience Canada, 2001, 28(4):179-186.
    [15]
    KELLAND M A, IVERSEN J E, LEKVAMK. Feasibility study for the use of kinetic hydrate inhibitors in deep-water drilling fluids[J]. Energy Fuels, 2008, 22(4):2405-2410. doi: 10.1021/ef800109e
    [16]
    赵欣,邱正松,黄维安,等. 天然气水合物热力学抑制剂作用机制及优化设计[J]. 石油学报,2015,36(6):760-766. doi: 10.7623/syxb201506014

    ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J]. Acta Petrolei Sinica, 2015, 36(6):760-766. doi: 10.7623/syxb201506014
    [17]
    JOHN LEE, DARYL CULLUM, JIM FRIEDHEIM, et a1. A new sbm for narrow margin extended reach drilling[J]. IADC/SPE, 1514, 69:2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (435) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return