Volume 38 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LIU Fujian, WANG Lixiang, DU Liangjun, et al.Preparation of salt tolerant suspension dispersion polymer system and its application in brine-based variable viscosity slippery water system[J]. Drilling Fluid & Completion Fluid,2021, 38(4):504-509 doi: 10.12358/j.issn.1001-5620.2021.04.017
Citation: LIU Fujian, WANG Lixiang, DU Liangjun, et al.Preparation of salt tolerant suspension dispersion polymer system and its application in brine-based variable viscosity slippery water system[J]. Drilling Fluid & Completion Fluid,2021, 38(4):504-509 doi: 10.12358/j.issn.1001-5620.2021.04.017

Preparation of Salt Tolerant Suspension Dispersion Polymer System and its Application in Brine-based Variable Viscosity Slippery Water System

doi: 10.12358/j.issn.1001-5620.2021.04.017
  • Received Date: 2021-03-20
  • Publish Date: 2021-07-31
  • In this paper, the zwitterionic polymer molecule P-DHZ containing double tailed hydrophobic monomer was developed by aqueous solution polymerization system. Its viscosity average molecular weight is more than 10 million. It owns excellent salt resistance, drag reduction and gelling properties. It can be used as a drag reducer or thickener for shale gas hydraulic fracturing fluid, and can be directly prepared with highly mineralized backflow fluid. Its salt resistance can reach 60 000 mg/L. In order to meet the process requirements of continuous mixing in shale gas fracturing field, P-DHZ powder was prepared and dispersed in hydrocarbon continuous phase to form a stable suspension system. The best powder size, dispersant, diverting agent and hydrocarbon continuous phase were selected to prepare a suspension system for continuous mixing in field. The proportion of powder accounted for 45% of the suspension system, and it can be solved in high salinity back-flow fluid to prepare fracturing fluid without fresh water resource. The maximum drag reduction rate is more than 75%, and the dissolution time is less than 30 seconds. The viscosity can be changed in real time by adjusting the concentration, and the slick-water system can be quickly transformed into the glue system.

     

  • loading
  • [1]
    李武广,杨胜来,殷丹丹,等. 页岩气开发技术与策略综述[J]. 天然气与石油,2011(1):34-37. doi: 10.3969/j.issn.1006-5539.2011.01.009

    LI Guangwu, YANG Shenglai,YIN Dandan, et al. Development technology and strategy of shale gas[J]. Nature Gas and Oil, 2011(1):34-37. doi: 10.3969/j.issn.1006-5539.2011.01.009
    [2]
    唐颖,唐玄,王广源,等. 页岩气开发水力压裂技术综述[J]. 地质通报,2011,30(2):393-399.

    TANG Ying, TANG Xuan,WANG Guangyuan et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 30(2):393-399.
    [3]
    黄凯,靳纪军,张洪坤. 非常规能源页岩气开采技术研究[J]. 内蒙古石油化工,2012(18):89-92. doi: 10.3969/j.issn.1006-7981.2012.18.037

    HUANG Kai, JIN Jijun, ZHANG Hongshen, et al. Research on unconventional energy shale gas production technology[J]. Inner Mongolia Petrochemical Industry, 2012(18):89-92. doi: 10.3969/j.issn.1006-7981.2012.18.037
    [4]
    李雪凝, 宋磊, 王毅霖. 浅析页岩气开发的环境影响[C]. 中国环境科学学会学术年会. 2014.

    LI Xuening, SONG Lei, WANG Yilin. Analysis on the environmental impact of shale gas development [C]. Annual meeting of Chinese society of Environmental Sciences. 2014
    [5]
    魏娟明,刘建坤,杜凯,等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27-32.

    WEI Juanming, LIU Jiankun, DU Kai, et al. The development and application of inverse emulsified friction reducer and slickwater system[J]. Petroleum Drilling Techniques, 2015, 43(1):27-32.
    [6]
    杜凯,林蔚然,祝纶宇,等. 生物基反相乳液型降阻剂与滑溜水体系的研发与评价[J]. 化工新型材料,2015(5):221-223.

    DU Kai, LIN Weiran, ZHU Lunyu,et al. Development and evaluation of bio-inverse emulsified friction reducer and slickwater system[J]. New Chemical Materials, 2015(5):221-223.
    [7]
    李嘉,何启平,蔡远红,等. 反相乳液降阻剂合成及其应用[J]. 天然气工业,2014,34(S1):27-30. doi: 10.3787/j.issn.1000-0976.2014.s1.007

    LI Jia, HE Qiping, CAI Yuanhong, et al. Synthesis and application of inverse emulsified friction reducer[J]. natural gas industry, 2014, 34(S1):27-30. doi: 10.3787/j.issn.1000-0976.2014.s1.007
    [8]
    何静,王满学,吴金桥,等. 多功能滑溜水减阻剂的制备及性能评价[J]. 油田化学,2019,139(1):52-56.

    HE Jing, WANG Manxue, WU Jinqiao,et al. Preparation and performance evaluation of a multi-functional drag reducing agent used in slick water fracturing fluid[J]. Oilfield Chemistry, 2019, 139(1):52-56.
    [9]
    曹正权,姜娜,陈辉,等. 聚丙烯酰胺/溶性酚醛树脂反相乳液水分散液的成胶性能[J]. 油田化学,2008(1):63-63. doi: 10.3969/j.issn.1000-4092.2008.01.016

    CAO Zhengquan, JIANG Na, CHEN Hui,et al. Gelation behavior of polyacrylamide/phenolic resin inverse emulsion dispersed in water[J]. Oilfield Chemistry, 2008(1):63-63. doi: 10.3969/j.issn.1000-4092.2008.01.016
    [10]
    MAO Jincheng , TAN Hongzhong , et al. Novel hydrophobic associating polymer with good salt tolerance[J]. Polymers, 2018, 10(8):849. doi: 10.3390/polym10080849
    [11]
    张锋三,沈一丁,任婷,等. 聚丙烯酰胺压裂液减阻剂的合成及性能[J]. 化工进展,2016,33(12):1422-1422.

    ZHANG Fengsan, SHEN Yiding, REN Ting,et al. Synthesis and properties of polyacrylamide drag reducer for fracturing fluid[J]. Chemical Industry and engineering progress, 2016, 33(12):1422-1422.
    [12]
    刘彝,刘京,颜菲,等. 缔合非交联压裂液储层伤害特征[J]. 海洋石油,2018,38(04):61-65.

    LIU Yi, LIU Jing, YAN Fei,et al. The characteristics about the damage of associated non cross-linking fracturing fluid to reservoirs[J]. Offshore Oil, 2018, 38(04):61-65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (420) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return