留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

库车山前低返速固井钻井液低剪切流变特性研究

张夏雨 艾正青 文志明 张峰 徐力群 刘锐 张兴国

张夏雨,艾正青,文志明,等. 库车山前低返速固井钻井液低剪切流变特性研究[J]. 钻井液与完井液,2021,38(4):492-498 doi: 10.3969/j.issn.1001-5620.2021.04.015
引用本文: 张夏雨,艾正青,文志明,等. 库车山前低返速固井钻井液低剪切流变特性研究[J]. 钻井液与完井液,2021,38(4):492-498 doi: 10.3969/j.issn.1001-5620.2021.04.015
ZHANG Xiayu, AI Zhengqing, WEN Zhiming, et al.Research for low shear rheological properties of low return velocity cementing drilling fluid in kuqa piedmont[J]. Drilling Fluid & Completion Fluid,2021, 38(4):492-498 doi: 10.3969/j.issn.1001-5620.2021.04.015
Citation: ZHANG Xiayu, AI Zhengqing, WEN Zhiming, et al.Research for low shear rheological properties of low return velocity cementing drilling fluid in kuqa piedmont[J]. Drilling Fluid & Completion Fluid,2021, 38(4):492-498 doi: 10.3969/j.issn.1001-5620.2021.04.015

库车山前低返速固井钻井液低剪切流变特性研究

doi: 10.3969/j.issn.1001-5620.2021.04.015
基金项目: 中国石油天然气有限公司重大专项“塔里木勘探开发关键技术研究”课题2“前陆冲断带超深井钻完井技术”(2014E-2102)
详细信息
    作者简介:

    张夏雨,硕士,1996年生,毕业于西南石油大学,现从事油气井固井方面研究。电话:18512844256;E-mail:529153158@qq.com

    通讯作者:

    张兴国,772376058@qq.com

  • 中图分类号: TE256

Research for low shear rheological properties of low return velocity cementing drilling fluid in Kuqa Piedmont

  • 摘要: 针对塔里木库车山前超高压气井四开低返速固井过程中钻井液实际处于低剪切流动状态和现场采用全剪切速率流变测试数据拟合其流变模式和流变参数的不足,研究了库车山前钻井液在低返速固井过程中的低剪切速率范围、对应的流变模式和流变参数及其对注水泥环空流动摩阻系数的影响。研究结果表明,在低返速固井过程中,钻井液的剪切速率明显小于1022 s−1(600 r/min),且对应的流变模式及流变参数与全剪切速率范围内的差异巨大,导致基于二者的注水泥环空摩阻系数也存在较大的差异,从而影响对注水泥环空压力计算的精确控制。为此,对低返速固井,应根据其低剪切速率范围内的流变模式和流变参数计算环空流动压耗,控制固井排量,提高低返速防漏固井的成功率。

     

  • 图  1  库车山前常用“五开五完”井身结构图

    图  2  流变模式拟合相关系数对比图

    图  3  流变参数随剪切速率范围变化规律

    图  4  环空摩阻系数对比图

    表  1  低返速固井排量数据

    井号ρ钻井液/
    g·cm−3
    ρ隔离液/
    g·cm−3
    ρ水泥浆/
    g·cm−3
    排量/
    L·s−1
    KS9052.502.522.586
    KS9072.502.532.516
    KS6031.901.9522
    KS6051.911.912.065
    下载: 导出CSV

    表  2  钻井液流变性基础数据

    转速/
    r/min
    剪切速
    率/s−1
    剪切应力/Pa
    30 ℃、
    10 MPa
    60 ℃、
    30 MPa
    90 ℃、
    50 MPa
    120 ℃、
    50 MPa
    150 ℃、
    70 MPa
    6001021.40172.10135.0096.1264.7151.76
    300510.69131.9981.3160.2134.4926.89
    200340.5092.8560.4239.7627.5421.35
    100170.2053.9138.4116.3411.218.24
    60102.1037.9723.4912.318.245.64
    3051.0724.1714.1310.126.044.94
    2034.0519.0611.689.155.244.21
    1220.4313.397.616.444.783.54
    610.2110.946.135.574.553.45
    35.118.384.704.294.322.89
    23.407.614.294.093.122.84
    11.706.543.883.682.212.12
    下载: 导出CSV

    表  3  库车山前钻井液在全剪切速率范围下不同流变模式的流变参数

    T/
    p/
    MPa
    流变
    模式
    YP/
    Pa
    PV/
    Pa·s
    R2 流变
    模式
    K/
    Pa·sn
    nR2
    3010宾汉15.180.1750.942幂律2.4280.6210.988
    6030宾汉7.6420.13180.984幂律0.7240.6740.995
    9050宾汉4.6180.0940.988幂律0.3700.8040.986
    12050宾汉3.1540.0610.994幂律0.2040.8290.985
    15070宾汉2.2850.0490.994幂律0.1280.8650.983
    下载: 导出CSV

    表  4  钻井液在不同排量、温压和流变模式下的剪切速率

    排量/
    L·s−1
    井眼直
    径/m
    套管直
    径/m
    环空返速/
    m·s−1
    宾汉模式幂律模式
    30 ℃/10 MPa下
    钻井液的剪切
    速率/s−1
    120 ℃/50 MPa下
    钻井液的剪切
    速率/s−1
    30 ℃/10 MPa下
    钻井液的剪切
    速率/s−1
    120 ℃/50 MPa下
    钻井液的剪切
    速率/s−1
    150.240.211.22449.29445.89505.49448.92
    120.240.210.98365.28361.88404.39359.13
    100.240.210.81309.27305.88336.99299.28
    80.240.210.65253.27249.87269.59239.42
    60.240.210.49197.26193.87202.19179.57
    40.240.210.33141.26137.86134.80119.71
    20.240.210.1685.2581.8667.4059.86
    下载: 导出CSV

    表  5  井深5321.55 m漏失地层承压能力计算结果

    环空系列环空尺寸/
    mm
    段长/
    m
    T/
    PV/
    Pa·s
    YP/
    Pa
    排量/
    L·s−1
    环空压耗/
    MPa
    钻-套52.835960.50300.06211.139 00260.266
    钻-套52.835960.50600.04190.879 98260.233
    钻-套52.835960.50600.04190.879 98260.233
    钻-套53.525786.55900.02800.632 07260.157
    钻-裸53.525786.70900.02800.632 07260.157
    钻-裸50.800676.801200.02100.548 06260.145
    钻-裸31.7501901200.02100.548 06260.143
    静液柱压力99.609 MPa合计1.334
    漏层压力100.943 MPaECD1.9356
    下载: 导出CSV

    表  6  固井注替排量计算表

    全剪切/低剪切速率下固井ECD计算
    环空系列流体类型T/
    PV/
    Pa·s
    YP/
    Pa
    环空尺寸/
    mm
    段长/
    m
    排量/
    L·s−1
    环空压耗/
    MPa
    钻-套钻井液300.062/0.0511.14/1.1252.83570850.049/0.037
    钻-套钻井液600.042/0.0370.88/0.7652.83570850.028/0.016
    钻-套钻井液600.042/0.0370.88/0.7652.83570850.028/0.016
    钻-套钻井液900.028/0.0270.63/0.5852.83570850.011/0.004
    钻-套钻井液900.028/0.0270.63/0.5853.52571150.011/0.007
    环空系列流体类型T/
    nK /
    Pa·s n
    环空尺寸/
    mm
    段长/
    m
    排量/
    L·s−1
    环空压耗/
    MPa
    钻-套隔离液900.97/0.770.04/0.1153.52546150.01/0.018
    钻-套水泥领浆1200.91/0.70.06/0.1853.52520050.006/0.011
    套-套水泥领浆1200.91/0.70.06/0.1824.9522150.051/0.068
    套-裸水泥尾浆1200.97/0.840.03/0.0617.485117850.55/0.585
    静液柱压力105.496 MPa合计0.744/0.762
    注替压力106.240 MPaECD1.9348/1.9351
    下载: 导出CSV
  • [1] 李晓春,李坤,刘锐,等. 塔里木盆地超深天然气井全过程塞流防漏注水泥技术[J]. 天然气工业,2016,36(10):102-109. doi: 10.3787/j.issn.1000-0976.2016.10.013

    LI Xiaochun, LI Kun, LIU Rui, et al. Whole process plugging and leakage prevention cement injection technology for ultra deep gas wells in Tarim basin[J]. Natural Gas Industry, 2016, 36(10):102-109. doi: 10.3787/j.issn.1000-0976.2016.10.013
    [2] 滕学清,崔龙连,李宁,等. 库车山前超深井储层钻井提速技术研究与应用[J]. 石油机械,2017,45(12):1-6.

    TENG Xueqing, CUI Longlian, LI Ning, et al. Research and application of drilling speed increase technology for ultra deep reservoir in Kuqa mountain front[J]. Petroleum Machinery, 2017, 45(12):1-6.
    [3] 袁中涛,杨谋,艾正青,等. 库车山前固井质量风险评价研究[J]. 钻井液与完井液,2017,34(6):89-94. doi: 10.3969/j.issn.1001-5620.2017.06.017

    YUAN Zhongtao, YANG Mou, AI Zhengqing, et al. Study on risk assessment of cementing quality in Piedmont of Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):89-94. doi: 10.3969/j.issn.1001-5620.2017.06.017
    [4] TENG X, YANG P, LI N, et al. Successful HPHT drilling through innovative practices: Sharing the subsalt HPHT well drilling case in Tarim basin[C]//SPE Middle East Oil & Gas Show and Conference, 2015.
    [5] Yan, Ye An, WenHua Wang, et al. Drilling fluid challenge during the ultra-deep HT/HP/HS drilling in the mountainous area, Tarim Basin[C]// Society of Petroleum Engineers-International Oil and Gas Conference and Exhibition in China 2010, IOGCEC, 2010, Vol. 3: 2057-2064.
    [6] 朱仁发, 喻可彬, 熊明勇. 库车山前钻井技术难点及技术对策——以大北208井为例[C]//2017年全国天然气学术年会, 2017.

    ZHU Renfa, YU Kebin, XIONG Mingyong. Technical difficulties and countermeasures of Kuqa piedmont drilling—Taking well Dabei 208 as an example [C]// 2017 national natural gas annual meeting, 2017.
    [7] 周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液,2017,34(1):54-59. doi: 10.3969/j.issn.1001-5620.2017.01.010

    ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Safety drilling technology exploration of ultra deep and ultra-high pressure salt water layer in front of Kuqa mountain[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):54-59. doi: 10.3969/j.issn.1001-5620.2017.01.010
    [8] 周健,刘永旺,贾红军,等. 库车山前巨厚盐膏层提速技术探索与应用[J]. 钻采工艺,2017,40(1):21-24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06

    ZHOU Jian, LIU Yongwang, JIA Hongjun, et al. Exploration and application of speed increasing technology for thick salt gypsum layer in front of Kuqa mountain[J]. Drilling & Production Technology, 2017, 40(1):21-24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06
    [9] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001: 526.

    LIU Chongjian, HUANG Baizong, XU Tongtai, et al. Theory and application of cementing in oil and gas wells [M]. Beijing: Petroleum Industry Press, 2001: 526
    [10] 李邦和. 低返速固井技术及固井质量检测[J]. 中国海上油气(工程),1992,4(1):35-42.

    LI Banghe. Cementing technology and cementing quality inspection with low return velocity[J]. China Offshore Oil and Gas(Engineering), 1992, 4(1):35-42.
    [11] 丁士东. 塔河油田紊流、塞流复合顶替固井技术[J]. 石油钻采工艺,2002,24(1):20-22. doi: 10.3969/j.issn.1000-7393.2002.01.007

    DING Shidong. Combined displacement cementing technology of turbulent flow and plug flow in Tahe Oil field[J]. Oil Drilling & Production Technology, 2002, 24(1):20-22. doi: 10.3969/j.issn.1000-7393.2002.01.007
    [12] 李早元,杨绪华,郭小阳,等. 固井前钻井液地面调整及前置液紊流低返速顶替固井技术[J]. 天然气工业,2005,25(1):93-95. doi: 10.3321/j.issn:1000-0976.2005.01.026

    LI Zaoyuan, YANG Xuhua, GUO Xiaoyang, et al. Surface adjustment of drilling fluid before cementing and low return velocity displacement cementing technology with pre fluid turbulent flow[J]. Natural Gas Industry, 2005, 25(1):93-95. doi: 10.3321/j.issn:1000-0976.2005.01.026
    [13] 张明深. 高温高压固井新概念和新技术在南海西部的应用[J]. 中国海上油气(工程),1999,11(6):31-37.

    ZHANG Mingshen. Application of new concept and new technique in cementing high temperature/ high pressure wells[J]. China Offshore Oil and Gas(Engineering), 1999, 11(6):31-37.
    [14] 管志川. 温度和压力对深水钻井油基钻井液液柱压力的影响[J]. 石油大学学报(自然科学版),2003,27(4):48-52.

    GUAN Zhichuan. Effects of temperature and pressure on the pressure of oil-based drilling fluid in deep water drilling[J]. Journal of Petroleum University(Edition of Natural Science), 2003, 27(4):48-52.
    [15] 李健,李早元,辜涛,等. 塔里木山前构造高密度油基钻井液固井技术[J]. 钻井液与完井液,2014,31(2):51-54. doi: 10.3969/j.issn.1001-5620.2014.02.014

    LI Jian, LI Zaoyuan, GU Tao, et al. Cementing technology of high density oil-based drilling fluid in Tarim Piedmont structure[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):51-54. doi: 10.3969/j.issn.1001-5620.2014.02.014
    [16] 张峰,刘子帅,李宁,等. 塔里木库车山前深井窄间隙小尾管固井技术[J]. 钻井液与完井液,2019,36(4):473-479.

    ZHANG Feng, LIU Zishuai, LI Ning, et al. Cementing small liner strings with narrow clearance in deep wells in the Kuche piedmont structure in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):473-479.
    [17] 宋洵成,王根成,管志川,等. 小井眼环空循环压耗预测系统方法[J]. 石油钻探技术,2004,32(6):11-12. doi: 10.3969/j.issn.1001-0890.2004.06.004

    SONG Xuncheng, WANG Gencheng, GUAN Zhichuan, et al. Prediction system method of annular circulation pressure loss in slim hole[J]. Petroleum Drilling Technology, 2004, 32(6):11-12. doi: 10.3969/j.issn.1001-0890.2004.06.004
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  271
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回