A New Method of Predicting the Bridging Lost Circulation Materials and Their Particle Size Distribution
-
摘要: 准确快速预测堵漏材料及其配方粒度分布是桥接堵漏配方数字化、智能化设计的关键。针对现有桥接堵漏材料及其配方粒度分布的实验测试法和粒度分布函数方法的不足,提出了基于分段三次Hermite插值方法的桥接堵漏材料及其配方粒度分布的表征及快速预测新方法。基于单一桥接堵漏材料粒度分布实测数据,对比分析了新方法与常用粒度分布函数方法对堵漏材料粒度分布表征的适用性;提出了新方法预测了不同堵漏配方的粒度分布,并利用实测数据验证了新方法的可靠性。结果表明,相较于常用粒度分布函数方法,基于分段三次Hermite插值法的新方法对桥接堵漏材料配方粒度分布的表征更加准确;堵漏配方的预测累积粒度分布曲线与实测数据高度吻合;新方法不需要预先设定粒度分布函数形式,且适用于具有多峰粒度分布的颗粒物料,新方法可用于预测不同配比颗粒混合物的粒度分布。Abstract: Accurate and rapid prediction of the types of lost circulation materials (LCMs) and their particle size distribution (PSD) plays a key role in the digital and intelligent design of bridging lost circulation material slurry. A new method of characterizing and rapid predicting the bridging lost circulation materials and the PSD thereof is presented based on the PCHIP method in an effort to overcome the deficiencies existed in the methods presently in use. Using the data obtained in the experiments on the PSD of a single bridging LCM, the applicability of the new method and the commonly used particle size distribution function methods in characterizing the PSD of LCMs was compared and analyzed. The new method was used to predict the PSDs of different LCM compositions, and the data collected in the measurement were used to verify the reliability of the new method. It was demonstrated that, compared with the commonly used PSD function methods, the new method can be used to more accurately characterize the PSDs of bridging LCM compositions. The cumulative PSD curve predicted with the new method is highly consistent with the measured data. Without the need of pre-setting a PSD function, the new method is suitable for predicting the PSD of particle matters with multiple peaks. The new method can be used to predict the PSDs of mixtures with different ratios of particle sizes.
-
表 1 堵漏材料激光累积特征粒度值数据
材料
名称特征粒度/μm 10% 30% 40% 50% 70% 90% 100% 蛭石 41 109 141 173 241 369 800 核桃壳 31 77 117 172 341 865 2000 碳酸钙 111 251 287 321 398 549 1135 表 2 堵漏材料粒度分布不同表征方法结果对比
材料
名称特征
粒度实测
值/μm分段三次Hermite
插值方法R-R函数
拟合方法预测
值/μm相对
误差/%预测
值/μm相对
误差/%蛭石 D10 41 39.775 −2.987 45.818 11.751 D50 173 172.507 −0.285 166.784 −3.593 D90 369 369.833 0.226 379.418 2.823 核桃壳 D10 31 30.348 −2.103 20.384 −34.245 D50 172 171.841 −0.093 180.991 5.227 D90 865 847.352 −2.040 728.158 −15.820 碳酸钙 D10 111 107.490 −2.28 150.843 35.895 D50 321 321.413 0.129 322.425 0.444 D90 549 551.513 0.458 522.387 −4.848 表 3 堵漏配方特征粒度值预测与实测结果
配方组成 特征
粒度实测
值/μm预测
值/μm相对
误差/%蛭石∶核桃壳∶
碳酸钙=5∶1∶1D10 39 36.4 −6.6 D50 192 189.1 −1.5 D90 490 478.4 −2.4 蛭石∶核桃壳∶
碳酸钙=1∶5∶1D10 36 31.9 −11.3 D50 187 188.2 0.6 D90 829 777.7 −6.2 蛭石∶核桃壳∶
碳酸钙=1∶1∶5D10 46 41.5 −9.8 D50 285 280.5 −1.6 D90 580 573.3 −1.2 -
[1] LEE L, DAHI TALEGHANI A.The effect particle size distribution of granular LCM on fracture sealing capability[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2020. [2] WANG G, HUANG Y, XU S. Laboratory investigation of the selection criteria for the particle size distribution of granular lost circulation materials in naturally fractured reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 71:103000. doi: 10.1016/j.jngse.2019.103000 [3] XU C, YAN X, KANG Y, et al. Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir[J]. Energy, 2019, 174:1012-1025. doi: 10.1016/j.energy.2019.03.017 [4] ALSHUBBAR G, NYGAARD R, JEENNAKORN M. The effect of wellbore circulation on building an LCM bridge at the fracture aperture[J]. Journal of Petroleum Science and Engineering, 2018, 165:550-556. doi: 10.1016/j.petrol.2018.02.034 [5] 余海峰. 裂缝性储层堵漏实验模拟及堵漏浆配方优化[D].成都: 西南石油大学, 2014.YU Haifeng. Experimental simulation of plugging in fractured reservoirs and optimization of plugging slurry formula[D]. Chengdu: Southwest Petroleum University, 2014. [6] 冉敬,杜谷,潘忠习. 沉积物粒度分析方法的比较[J]. 岩矿测试,2001,30(3):449-55.RAN Jin, DU Gu, PAN Zhongxi. Study on methods for particle size analysis of sediment samples[J]. Rock and Mineral Analysis, 2001, 30(3):449-55. [7] 李文凯,吴玉新,黄志民,等. 激光粒度分析和筛分法测粒径分布的比较[J]. 中国粉体技术,2007(5):10-13.LI Wenkai, WU Yuxin, HUANG Zhimin, et al. Measurement results comparison between laser particle analyzer and sieving method in particle size distribution[J]. China Powder Science and Technology, 2007(5):10-13. [8] RAZAVI O, VAJARGAH A, VAN OORT E, et al. Optimum particle size distribution design for lost circulation control and wellbore strengthening[J]. Journal of Natural Gas Science and Engineering, 2016, 35:836-850. [9] 曾凡, 胡永平. 矿物加工颗粒学[M]. 中国矿业大学出版社, 1995.ZENG Fan, HU Yongping. Mineral processing granulology[M]. China University of Mining and Technology Press, 1995. [10] 何桂春,黄开启,倪文. 粒度分布函数参数的混沌遗传反演计算[J]. 矿山机械,2010(9):76-80.HE Guichun, HUANG Kaiqi, NI Wen. Reverse calculation of parameters of particle size distribution function with chaotic genetic algorithm[J]. Mining & Processing Equipment, 2010(9):76-80. [11] 张凤元,焦金辉,焦建立,等. 分段三次 Hermite 插值在自动测试系统数据补偿中的应用[J]. 现代电子技术,2012,35(13):143-145.ZHANG Fengyuan, JIAO Jinhui, JIAO Jianli, et al. Application of piecewise cubic Hermite interpolation in data compensation of automatic testing system[J]. Modern Electronics Technique, 2012, 35(13):143-145. [12] 陶天友,王浩. 基于Hermite插值的简化风场模拟[J]. 工程力学,2017,34(3):182-188.TAO Tianyou, WANG Hao. Reduced simulation of the wind field based on hermite interpolation[J]. Engineering Mechanics, 2017, 34(3):182-188. [13] 仝海波,沙海,张国柱,等. 一种GNSS卫星轨道高精度实时插值方法[J]. 国防科技大学学报,2012,34(2):59-63.TONG Haibo, SHA Hai, ZHANG Guozhu, et al. A high-precision and real-time interpolation method for satellite orbit in GNSS[J]. Journal of National University of Defense Technology, 2012, 34(2):59-63. [14] 张旭臣. 分段三次 Hermite 插值在水文上的应用[J]. 南水北调与水利科技,2009,7(5):92-94.ZHANG Xuchen. Piecewise cubic hermite interpolation function and its application to hydrology[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5):92-94. [15] 康毅力,王凯成,许成元,等. 深井超深井钻井堵漏材料高温老化性能评价[J]. 石油学报,2019,40(2):215-223.KANG Yili, WANG Kaicheng, XU Chengyuan. et al High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling[J]. Acta Petrolei Sinica, 2019, 40(2):215-223. [16] 赵正国,蒲晓林,王贵,等. 裂缝性漏失的桥塞堵漏钻井液技术[J]. 钻井液与完井液,2012,29(3):44-46.ZHAO Zhengguo, PU Xiaolin, WAN Gui, et al. Study on drilling fluid bridge plugging technology for fractured formation[J]. Drilling Fluid & Completion Fluid, 2012, 29(3):44-46. -