An Environmentally Friendly Oil Base Mud
-
摘要: 针对目前油基钻井液存在因所含矿物油和处理剂的生物毒性大,而被限制或禁止排放的问题,制备出生物毒性低的油基钻井液基油,合成高效低毒的一体化乳化剂和新型高凝胶改性有机土,并对钻井液处理剂及加量进行优选,最终形成了一套环保型油基钻井液体系。该钻井液体系的生物毒性LC50达到15 000 mg/L以上,生物可降解性好;体系的流变性良好,破乳电压达到800 V以上,高温高压滤失量小于6 mL;钻井液体系能抗5%石膏、5%钻屑和15%盐水污染;该油基钻井液应用性良好,油水比可在60/40~90/10的范围内调节,密度可在1.25~2.0 g/cm3范围内调节,抗温可达220 ℃,高温稳定性良好。研究结果表明,环保型油基钻井液具有低毒环保、可降解等优势,抗污染、抗高温、稳定性强、可调节范围广,完全可满足较复杂地层和环境保护要求高区块对钻井液的要求。Abstract: Mineral oils and several oil base mud additives presently in use are highly biologically toxic and the discharge of oil base muds formulated with them are prohibited or limited. To minimize the toxicity of oil base muds, an environmentally friendly oil base mud was formulated with a weakly biologically toxic base oil, a high efficiency low-toxicity all-in-one emulsifier, a new modified high-gel organophilic clay and other additives developed. The concentrations of these additives were optimized to obtain an oil base mud with satisfactory performance. The oil base mud has LC50 of greater than 15,000 mg/L and is biologically degradable. The oil base mud has good rheology, and its electrical stability is at least 800 V. The HTHP filtration rate is less than 6 mL. This oil base mud is resistant to contamination from 5% gypsum or 5% drilled cuttings or 15% salt water. The oil/water ratio of the mud can be adjusted between 60/40 and 90/10, and the density can be controlled between 1.25 g/cm3 and 2.0 g/cm3. This oil base mud has good high temperature stability, it functions normally at 220 ℃. These properties can satisfy the needs of drilling in wells penetrating complex formations and in area with stringent environment protection requirements.
-
Key words:
- Oil base mud /
- Base oil /
- Emulsifier /
- Biological toxicity /
- Organophilic clay /
- High temperature /
- Settling stability
-
表 1 油基钻井液基油的理化性能
基油 闪点/
℃ρ/
g·cm−3运动黏度/
mm2/s芳烃含
量/%苯胺
点/℃倾点/
℃V170 85 0.76 20.0 <0.01 >85 −24 0#柴油 80 0.76 58.4 19.40 −3 5#白油 112 0.82 32.9 3.90 60 0 Saraline 185V 110 0.81 28.0 <0.01 >85 −20 注:密度为20 ℃测得,运动黏度为40 ℃测得 表 2 乳化剂EF-EMUL对钻井液生物毒性和性能的影响
EF-EMUL/
%LC50/
mg·L−1实验
条件φ600/
φ300AV/
mPa·sPV/
mPa·sYP/
PaES/
V0 >30 000 热滚前 76/45 38 31 7 523 热滚后 82/47 41 35 6 412 1 3800 热滚前 74/45 37 29 8 567 热滚后 76/45 38 31 7 602 2 2000 热滚前 84/50 42 34 8 766 热滚后 90/51 45 39 6 658 3 1400 热滚前 90/55 45 35 10 863 热滚后 86/51 43 35 8 850 4 800 热滚前 96/60 48 36 12 937 热滚后 90/53 45 37 8 930 注:热滚条件为150 ℃、16 h 表 3 加入2%改性有机土后油基钻井液的性能
基础油 LC50/
mg·L−1实验
条件φ600/
φ300AV/
mPa·sPV/
mPa·sYP/
Pa胶体
率/%柴油 >30 000 热滚前 26/17.0 13 9.0 4 98 热滚后 24/15.5 12 8.5 3 白油 >30 000 热滚前 28/18.5 14 9.5 4 88 热滚后 26/18.0 13 8.0 5 V170基油 >30 000 热滚前 28/19.0 14 9.0 5 80 热滚后 26/17.0 13 9.0 4 注:热滚条件为150 ℃、16 h 表 4 处理剂优选实验
处理剂 LC50/
mg·L−1AV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL降滤失剂 HIFLO-1 8000 61 51 10 1507 4.8 HIFLO-2 30 000 65 55 10 1103 7.8 HIFLO-3 40 000 40 33 7 976 4.2 HIFLO-4 50 000 70 64 6 1167 8.2 封堵剂 HISEAL-1 30 000 48 40 8 984 4.2 HISEAL-2 40 000 46 38 8 1053 3.6 HISEAL-3 50 000 52 43 9 873 4.6 HISEAL-4 40 000 44 36 8 905 4.4 注:热滚条件为150 ℃、16 h 表 5 不同密度环保型油基钻井液性能
ρ/
g·cm−3实验
条件AV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL1.25 热滚前 30.5 25 5.5 554 3.8 热滚后 28.0 22 6.0 678 1.5 热滚前 37.0 31 6.0 846 3.2 热滚后 38.0 30 8.0 691 1.8 热滚前 46.0 39 7.0 764 3.0 热滚后 50.0 41 9.0 1145 2.0 热滚前 52.0 45 7.0 927 3.6 热滚后 60.0 50 10.0 831 注:热滚条件为150 ℃、16 h 表 6 不同油水比环保型油基钻井液性能
油水比 实验
条件AV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL90∶10 热滚前 38 32 6 847 4.0 热滚后 40 33 7 1099 85∶15 热滚前 46 38 8 764 3.2 热滚后 50 40 10 1145 80∶20 热滚前 52 43 9 723 4.8 热滚后 60 51 10 1126 70∶30 热滚前 64 54 10 676 5.2 热滚后 68 56 12 988 60∶40 热滚前 69 60 9 532 7.6 热滚后 71 63 8 657 注:热滚条件为150 ℃、16 h 表 7 不同温度环保型油基钻井液性能
T/
℃实验
条件AV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL150 热滚前 46 40 6 764 3.2 热滚16 h 50 42 8 1145 160 热滚前 47 40 7 865 4.4 热滚16 h 59 51 8 1233 180 热滚前 45 39 6 945 5.4 热滚16 h 68 61 7 1245 200 热滚前 48 41 7 768 6.2 热滚16 h 62 56 6 1135 220 热滚前 46 39 7 857 7.6 热滚16 h 72 68 4 988 表 8 体系抗污染性能评价
污染物 实验
条件AV/
mPa·sPV/
mPa·sYP/
PaES/
V备注 5%CaSO4 热滚前 61 55 6 622 无沉淀 污染后 65 57 8 603 热滚后 73 70 3 723 5%NaCl 热滚前 54 48 6 701 无沉淀 污染后 62 55 7 621 热滚后 75 70 5 555 5%钻屑 热滚前 62 55 7 662 少量沉淀 污染后 65 57 8 733 热滚后 85 73 12 1001 注:热滚条件为150 ℃、16 h 表 9 环保油基钻井液高温稳定性评价
t静置/
hAV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL沉降因
子SF备注 0 48 41 7 642 / 0.502 / 16 57 50 7 941 5.0 0.504 流动性较好 24 61 53 8 1033 5.6 0.505 流动良好 48 66 55 11 1057 6.4 0.507 流动良好 72 71 59 12 1166 6.8 0.518 有少量沉淀 168 76 66 10 1031 7.6 0.510 稍稠,部分
沉淀 -
[1] 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田,2011,18(4):533-537.WANG Zhonghua. Research and application progress of oil-based drilling fluid at home and abroad[J]. Fault-Block Oil & Gas Field, 2011, 18(4):533-537. [2] 石磊. 适合海洋深水钻井的全油钻井液体系研究[J]. 内蒙古石油化工,2012(1):1-2.SHI Lei. Research on all oil drilling fluid system suitable for offshore deep water drilling[J]. Inner Mongolia Petrochemical Industry, 2012(1):1-2. [3] 王茂功,徐显广,孙金声,等. 气制油合成基钻井液关键处理剂研制与应用[J]. 钻井液与完井液,2016,33(3):30-34. doi: 10.3969/j.issn.1001-5620.2016.03.006WANG Maogong, XU Xianguang, SUN Jinsheng, et al. Development and application of key treatment agent for synthetic drilling fluid from gas to oil[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):30-34. doi: 10.3969/j.issn.1001-5620.2016.03.006 [4] 黄雪静,崔茂荣,周长虹,等. 钻井液生物毒性评价方法对比[J]. 气田环境保护,2006,16(4):25-27.HUANG Xuejing, CUI Maorong, ZHOU Changhong, et al. Comparson of biological toxicity assessment methods for drilling fluids[J]. Environmental Protection of Oil & Gas Fields, 2006, 16(4):25-27. [5] 刘丽萍,褚春莹,张前前,等. 卤虫在钻井液毒性检测中的应用[J]. 中国海洋大学学报,2010,40(9):96-100.LIU Liping, CHU Chunying, ZHANG Qianqian, et al. Assessment of biotoxicity of drilling fluids using artemia salina[J]. Periodical of Ocean University of China, 2010, 40(9):96-100. [6] 尹翠玲,张秋丰,赵文,等. 钻井液对四种水生生物的急性毒性研究[J]. 水产科学,2015,34(1):53-57.YIN Cuiling, ZHANG Qiufeng, ZHAO Wen, et al. Acute toxicity of drilling fluids to four species of aquatic organisms[J]. Fisheries Science, 2015, 34(1):53-57. [7] EVANS N, LANGLOIIS B, AUDIBERT-HAYET A, et al. High performance emulsifiers for synthetic based muds[J]. Society of Petroleum Engineers, 2000. [8] 王学川,邱白玉. 表面活性剂的毒性问题[J]. 日用化学品科学,2005,28(6):22-26. doi: 10.3969/j.issn.1006-7264.2005.06.008WANG Xuechuan, QIU Baiyu. Problems of surfactants' toxicity[J]. Detergent & Cosmetics, 2005, 28(6):22-26. doi: 10.3969/j.issn.1006-7264.2005.06.008 [9] 曹杰,邱正松,徐加放,等. 有机土研究进展[J]. 钻井液与完井液,2012,29(3):81-84, 98. doi: 10.3969/j.issn.1001-5620.2012.03.025CAO Jie, QIU Zhengsong, XU Jiafang, et al. Study progresses in organic clay[J]. Drilling Fluid & Completion Fluid, 2012, 29(3):81-84, 98. doi: 10.3969/j.issn.1001-5620.2012.03.025 [10] 胡成军,可点,周书胜,等. 一种气制油合成基钻井液用有机土的合成与评价[J]. 化学工程与装备,2020(3):30-32.HU Chengjun, KE Dian, ZHOU Shusheng, et al. Synthesis and evaluation of an organic soil for drilling fluid based on gas to oil synthesis[J]. Chemical Engineering & Equipment, 2020(3):30-32. [11] 宋海明,李静静,陈杰. 低毒油包水钻井液用耐高温有机土的研制[J]. 钻井液与完井液,2015,32(3):13-15.SONG Haiming,LI Jingjing,CHEN Jie. Development of a high temperature low toxicity W/O organophilic clay[J]. Drilling Fluid & Completion Fluid, 2015, 32(3):13-15. [12] 孙中富,王卫东,李小迪,等. 生物柴油钻井液用有机土的制备[J]. 钻井液与完井液,2015,32(6):11-13.SUN Zhongfu,WANG Weidong,LI Xiaodi,et al. Study on organophilic clay for bio-diesel oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):11-13. [13] 管俊芳,陆琦,陈林丽,等. 膨润土深加工的研究进展[J]. 化工矿产地质,2002,24(1):23-27. doi: 10.3969/j.issn.1006-5296.2002.01.005GUAN Junfang, LU Qi, CHEN Linli, et al. Present study and prospect of further processing of bentonite[J]. Geology of Chemical Minerals, 2002, 24(1):23-27. doi: 10.3969/j.issn.1006-5296.2002.01.005 [14] 崔明磊. 抗高温白油基钴井液用有机土的研制及性能研究[J]. 广州化工,2014,42(6):70-72. doi: 10.3969/j.issn.1001-9677.2014.06.026CUI Minglei. The development and testing of new organic clay with high temperature resistant ability in oil- based drilling fluid[J]. Guangzhou Chemical Industry and Technology, 2014, 42(6):70-72. doi: 10.3969/j.issn.1001-9677.2014.06.026 [15] 吴鑫磊,闫丽丽,王立辉,等. 环保型钻井液用降滤失剂研究进展[J]. 钻井液与完井液,2018,35(3):8-16. doi: 10.3969/j.issn.1001-5620.2018.03.002WU Xinlei, YAN Lili, WANG Lihui, et al. Research progress of filtrate reducer for environmental protection drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):8-16. doi: 10.3969/j.issn.1001-5620.2018.03.002 [16] 徐同台,卢淑芹,何瑞兵,等. 钻井液用封堵剂的评价方法及影响因素[J]. 钻井液与完井液,2009,26(2):60-68. doi: 10.3969/j.issn.1001-5620.2009.02.019XU Tongtai, LU Shuqin, HE Ruibing, et al. Methods for evaluating drilling fluid sealing and plugging agents and the influential factors[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):60-68. doi: 10.3969/j.issn.1001-5620.2009.02.019 [17] 王建华,李建男,闫丽丽,等. 油基钻井液用纳米聚合物封堵剂的研制[J]. 钻井液与完井液,2013,30(6):5-8. doi: 10.3969/j.issn.1001-5620.2013.06.002WANG Jianhua, LI Jiannan, YAN Lili, et al. Development of nano polymer plugging agent for oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(6):5-8. doi: 10.3969/j.issn.1001-5620.2013.06.002 [18] 庄严,熊汉桥,丁峰,等. 油水比对油基钻井液流变性的影响[J]. 科学技术与工程,2016,16(12):238-242. doi: 10.3969/j.issn.1671-1815.2016.12.039ZHUANG Yan, XIONG Hanqiao, DING Feng, et al. Impact of water / oil ratio on the rheological of oil based drilling fluid[J]. Science Technology and Engineering, 2016, 16(12):238-242. doi: 10.3969/j.issn.1671-1815.2016.12.039 [19] 李建成,杨鹏,关键,等. 新型全油基钻井液体系[J]. 石油勘探与开发,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16LI Jiancheng, YANG Peng, GUAN Jian, et al. New all oil based drilling fluid system[J]. Petroleum Exploration and Development, 2014, 41(4):490-496. doi: 10.11698/PED.2014.04.16 [20] 解宇宁. 低毒环保型油基钻井液体系室内研究[J]. 石油钻探技术,2017,45(1):45-50.XIE Yuning. Experimental study on low-toxicity and environment-friendly oil-based drilling fluids[J]. Petroleum Drilling Techniques, 2017, 45(1):45-50. [21] 李家学,蒋绍宾,晏智航,等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液,2019,36(5):575-580. doi: 10.3969/j.issn.1001-5620.2019.05.009LI Jiaxue, JIANG Shaobin, YAN Zhihang, et al. Evaluation method of static settlement stability of drilling and completion fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):575-580. doi: 10.3969/j.issn.1001-5620.2019.05.009 -