留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地热井高导热低密度固井材料制备、性能及结构

杨雨 徐拴海 张浩 韩永亮 张卫东 李永强

杨雨, 徐拴海, 张浩, 韩永亮, 张卫东, 李永强. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016
引用本文: 杨雨, 徐拴海, 张浩, 韩永亮, 张卫东, 李永强. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016
YANG Yu, XU Shuanhai, ZHANG Hao, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016
Citation: YANG Yu, XU Shuanhai, ZHANG Hao, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016

地热井高导热低密度固井材料制备、性能及结构

doi: 10.3969/j.issn.1001-5620.2021.01.016
基金项目: 

地科技股份有限公司科技创新资金专项项目“基于定向井的中深层地热开发利用关键技术研究与试验工程”(2018-TD-ZD017)

详细信息
    作者简介:

    杨雨,硕士研究生,1996年生,研究方向为中深层地热能开发利用及高导热固井材料研究。E-mail:916767470@qq.com

    通讯作者:

    徐拴海,博士,研究员

  • 中图分类号: TE256.6

Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells

  • 摘要: 高导热低密度固井材料(HLC)能够有效解决中深层地热井井深易漏的固井难题,并能有效提高地热井地下换热效率。通过正交实验,基于层次分析法和矩阵分析法,综合考虑导热系数、48 h抗压强度、密度和成本4个指标,制备了可用于中深层地热井固井的HLC;通过实验测试了固井材料的各性能指标;利用SEM、XRD和MIP观测了HLC的微观结构,并分析了导热机理。结果表明,HLC配方为:55%水泥+9%石墨+25%石英粉+2%粉煤灰+2%硅灰+2%降失水剂+3%稳定剂+1.5%膨胀剂+0.5%缓凝剂,W/C=0.78;其各项性能指标均满足相关规范要求;石墨的加入改善了HLC的微观结构及孔径分布;导热机理符合导热路径理论。可为中深层地热井的固井施工和相似材料的制备研究提供借鉴。

     

  • [1] WANG Kai,YUAN Bin,JI Guomin,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477.
    [2] 自然资源部中国地质调查局等.《 中国地热能发展报告(2018)》[R]. 北京:中国石化出版社, 2018. China Geological Survey, Ministry of Natural Resources, etc. China Geothermal Energy Development Report (2018)[R]. Beijing:China Petrochemical Press, 2018.
    [3] 窦斌,田红,郑君,等. 地热工程学[M]. 武汉:中国地质大学出版,2020. DOU Bi n,TIAN Hong,ZHENG Jun, et al. Geothermal engineering[M]. Wuhan:China University of Geosciences Publishing, 2020.
    [4] 李瑞霞,王高升,宋先知,等. 固井水泥对同轴型换热系统取热效果影响数值分析[J]. 建筑科学,2018,34(4):36-40.

    LI Ruixia, WANG Gaosheng, SONG Xianzhi, et al. Numerical analysis of the effect of cementing cement on the heat extraction effect of coaxial heat exchange system[J]. Building Science,2018,34(4):36-40.
    [5] 张浩,徐拴海,杨雨,等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探,2020,48(2):195-201.

    ZHANG Hao,XU Shuohai,YANG Yu,et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coalfield Geology and Exploration,2020,48(2):195-201.
    [6] 冯建月. 高温地热井微珠低密度水泥体系设计与性能研究[C]. 第十九届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 中国地质学会探矿工程专业委员会, 2017:110-114. FENG Jianyue. Design and performance of microbead low-density cement system for high-temperature geothermal wells[C]. Proceedings of the 19th National Annual Conference of Prospecting Engineering(Rock and Soil Drilling Engineering) Academic Exchange. Professional Committee of Prospecting Engineering of Chinese Geological Society, 2017

    :110-114.
    [7] 丁志伟,李嘉奇,赵靖影,等. 窄密度窗口正注反挤低密度水泥浆固井技术[J]. 钻井液与完井液,2019, 36(6):759-765.

    DING Zhiwei,LI Jiaqi,ZHAO Jingying,et al. Cementing technology of forward injection and backward extrusion low density cement slurry with narrow density window[J]. Drilling Fluid & Completion Fluid,2019,6(6):759-765.
    [8] 左景栾,孙晗森,吴建光,等. 煤层气超低密度固井技术研究与应用[J]. 煤炭学报,2012,37(12):2076-2082.

    ZUO Jingluan, SUN Hansen, WU Jianguang, et al. Research and application of ultra-low density cementing technology for coal bed methane[J]. Journal of China Coal Society,2012,37(12):2076-2082.
    [9] LARRARD F D, SEDRAN T. Optimization of ultrahigh-performance concrete by the use of a packing model[J]. Cement and Concrete Research,1994,24(6):997-1009.
    [10] SAATY T L. Analytic hierarchy process[M]. Encyclopedia of Operations Research and Management Science. 2001.
    [11] 周玉珠. 正交实验设计的矩阵分析方法[J]. 数学的实践与认识,2009,39(2):202-207.

    ZHOU Yuzhu. The matrix analysis method of orthogonal experiment design[J]. Mathematics in Practice and Theory,2009,39(2):202-207.
    [12] 彭晖,戈娅萍,杨振天,等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui,GAO Yaping,YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Journal of Composite Materials,2018,35(8):2132-2139.
    [13] 郭晓潞,宋猛. 蒸压加气混凝土的孔结构及表征方法研究进展[J]. 材料导报,2018,32(S2):440-445.

    GUO Xiaolu, SONG Meng. Research progress of pore structure and characterization method of autoclaved aerated concrete[J]. Material Guide,2018,32(S2):440-445.
    [14] 李刊,魏智强,乔宏霞,等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J/OL]. 复合材料学报:1-11[2020-06-22

    ]. https://doi.org/10.13801/j.cnki.fhclxb.20200218.002. LI Kan,WEI Zhiqiang,QIAO Hongxia,et al. Early microstructure and properties of Nano-SiO2 modified polymer cement-based composite[J/OL]. Journal of composite materials:1-11[2020-06-22] https://doi.org/10.13801/j.cnki.fhclxb.20200218.002.
    [15] 薛翠真,申爱琴,郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报,2019,33(8):1348-1353.

    XUE Cuizhen,SHEN Aiqin,GUO Yinchuan. Establishment of prediction model of compressive strength of concrete mixed with cwcpm based on pore structure parameters[J]. Materials Guide,2019,33(8):1348-1353.
    [16] TOBERER E S,BARANOWSKI L L,DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209.
    [17] YANG Xutong,LIANG Chaobo,MA Tengbo,et al. A review on thermally conductive polymeric composites:classification,measurement, model and equations, mechanism and fabrication methods[J].Advanced Composites and Hybrid Materials,2018,1(2):207-230.
  • 加载中
计量
  • 文章访问数:  456
  • HTML全文浏览量:  131
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回