留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺北油气田却尔却克组井壁失稳机理及应对措施

陈修平 高雷雨 刘景涛 胡云磊 李家学 石祥超

陈修平, 高雷雨, 刘景涛, 胡云磊, 李家学, 石祥超. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液, 2021, 38(1): 35-41. doi: 10.3969/j.issn.1001-5620.2021.01.006
引用本文: 陈修平, 高雷雨, 刘景涛, 胡云磊, 李家学, 石祥超. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液, 2021, 38(1): 35-41. doi: 10.3969/j.issn.1001-5620.2021.01.006
CHEN Xiuping, GAO Leiyu, LIU Jingtao, HU Yunlei, LI Jiaxue, SHI Xiangchao. Mechanisms of Borehole Wall Destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and Measures Dealing with the Borehole Wall Collapse[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 35-41. doi: 10.3969/j.issn.1001-5620.2021.01.006
Citation: CHEN Xiuping, GAO Leiyu, LIU Jingtao, HU Yunlei, LI Jiaxue, SHI Xiangchao. Mechanisms of Borehole Wall Destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and Measures Dealing with the Borehole Wall Collapse[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 35-41. doi: 10.3969/j.issn.1001-5620.2021.01.006

顺北油气田却尔却克组井壁失稳机理及应对措施

doi: 10.3969/j.issn.1001-5620.2021.01.006
基金项目: 

中国石油化工集团公司重大科技项目群“顺北油气田一区优快钻井技术研究”(P18021-1)、国家科技重大专项课题“塔里木盆地碳酸盐岩油气田提高采收率关键技术示范工程”(2016ZX05053-004-001)、国家自然科学基金项目(51774248)、四川省国际科技创新合作/港澳台科技创新合作项目(2019YFH0166)资助部分研究内容

详细信息
    作者简介:

    陈修平,工程师,博士,1988年生,毕业于中国石油大学(华东),现在从事井壁稳定方面的研究工作。E-mail:cxp19882006@163.com

  • 中图分类号: TE283

Mechanisms of Borehole Wall Destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and Measures Dealing with the Borehole Wall Collapse

  • 摘要: 塔里木盆地顺北油气田却尔却克组钻井过程中井壁失稳事故频发,严重影响了施工进度。针对顺北油气田X井却尔却克组地层井壁失稳的机理,开展了岩石崩解实验、点载荷实验、X衍射、扫描电镜实验研究。结果显示,岩石矿物组分中黏土含量大(15%~35%),其中伊利石含量在60%左右,伊蒙混层主要在10%~30%,吸水率小(2%),崩解率大(5%),岩石属于典型的硬脆性灰质泥岩。室内实验表明,在清水和水基钻井液条件下,岩石强度表现出较强的非均质性和强度弱化(岩石单轴强度降低在10~40 MPa之间),但在油基钻井液下,岩石强度几乎无弱化影响,并且油基钻井液对微裂缝起到较好地封堵作用。此地层水基钻井液下井壁失稳机理一方面是硬脆性泥页岩中的膨胀性黏土矿物吸水膨胀,强度弱化,失去有效支撑;另一方面微裂缝在水力尖劈作用下,井壁岩石崩落垮塌失稳。油基钻井液中乳化剂、润湿剂等表面活性剂特殊结构可以对泥页岩中裂缝微裂缝进行有效封堵,减少水化和水力尖劈作用,实现井壁稳定。现场在第三侧钻井眼水基钻井液井壁严重失稳条件下,改用油基钻井液,顺利钻完计划进尺,大幅度减少井壁失稳损失。

     

  • [1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2017, 39(2):5-14.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim basin[J]. Oil & Gas Geology,2017, 39(2):5-14.
    [2] 曲占庆,林强,郭天魁,等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4):533-536.

    QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4):533-536.
    [3] 陈养龙,席宝滨,晁文学,等. 顺北区块Ⅰ号断裂带钻井分层提速技术[J]. 断块油气田,2018,25(5):105-108.

    CHEN Yanglong, XI Baobin, CHAO Wenxue, et al. Improving drilling speed technologies by stratification for No.1 fault-zone of Shunbei block[J]. Fault-Block Oil & Gas Field,2018, 25(5):105-108.
    [4] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺, 2019, 41(2):130-136.

    LIU Biao,PAN Lijuan,WANG Shengming,et al. Casing program optimization and application of ultradeep wells in Shunbei oil and gas[J]. Oil Drilling & Production Technology,2019, 41(2):130-136.
    [5] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019, 47(3):113-120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):113-120.
    [6] MARK D Z. Reservoir geomechanics[M]. Cambridge University Press. 2007.
    [7] 许春田,刘建全,汤燕丹,等. 裂隙发育硬脆性泥岩井壁失稳机理及其解决措施[J]. 钻井液与完井液, 2013, 30(3):13-16.

    XU Chuntian, LIU Jianquan,TANG Yandan, et al. Research on mechanism and treating methods of wellbore instability in fractured and hard brittle mud[J]. Drilling Fluid & Completion Fluid,2013, 30(3):13-16.
    [8] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6):8-13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei oilfield[J]. Petroleum Drilling Techniques, 2017,45(6):8-13.
    [9] 杨勇. 顺北4井却尔却克组井壁失稳的机理及对策探讨[J]. 化工管理,2019(20):213-214. YANG Yong. Discussion on the mechanism and countermeasures of wellbore instability in Queerqueke formation in Shunbei 4

    well[J]. Chemical Enterprise Management, 2019,(20):213-214.
    [10] 刘洋洋,邓明毅,谢刚,等,基于压力传递的钻井液纳米封堵剂研究与应用[J],钻井液与完井液,2017, 34(6):24-28.

    LIU Yangyang, DENG Mingyi,XIE Gang, et al. Research and application of nano-plugging agent for drilling fluid based on pressure transfer[J]. Drilling Fluid & Completion Fluid,2017,34(6):24-28
    [11] 宋壁涛, 马成云, 徐同台,等, 硬脆性泥页岩钻井液封堵性评价方法[J],钻井液与完井液,2016,33(4):51-55.

    SONG Bitao,MA Chengyun, XU Tongtai, et al. Evaluation method of plugging property of hard brittle shale drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016,33(4):51-55.
    [12] 杨决算, 侯杰. 泥页岩微裂缝模拟新方法及封堵评价实验[J]. 钻井液与完井液,2017,34(1):45-49.

    YANG Juesuan, HOU Jie. Evaluation method of plugging property of hard brittle shale drilling fluid[J].Drilling Fluid & Completion Fluid,2017,34(1):45-49.
    [13] 张洪伟,左凤江,李洪俊,等. 微裂缝封堵剂评价新方法及强封堵钻井液配方优选[J]. 钻井液与完井液, 2015, 32(6):43-45.

    ZHANG Hongwei,ZUO Fengjiang,LI Hongjun, et al. New evaluation method of micro fracture plugging agent and optimization of strong plugging drilling fluid formula[J]. Drilling Fluid & Completion Fluid,2015, 32(6):43-45.
    [14] 康毅力,皇凡生,游利军,等. 钻井液浸泡页岩裂缝宽度的模拟及应用[J]. 石油钻采工艺,2014,36(5):41-46.

    KANG Yili,HUANG Fansheng,YOU Lijun, et al. Simulation and application of shale fracture width immersed in drilling fluid[J]. Oil Drilling & Production Technology,2014,36(5):41-46.
    [15] 何恕,李胜,王显光,等. 高性能油基钻井液的研制及在彭页3HF井的应用[J]. 钻井液与完井液,2013, 30(5):1-4.

    HE Shu,LI Sheng,WANG Xianguang, et al. Researh on high performance oil-based drilling fluid and it's application on well Pengye3HF[J].Drilling Fluid & Completion Fluid,2013, 30(5):41-46.
  • 加载中
计量
  • 文章访问数:  479
  • HTML全文浏览量:  171
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回