留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于深水水基钻井液的温敏聚合物流型调节剂

吕开河 王中义 黄贤斌 王金堂 杨峥 王韧 邵子桦

吕开河, 王中义, 黄贤斌, 王金堂, 杨峥, 王韧, 邵子桦. 适用于深水水基钻井液的温敏聚合物流型调节剂[J]. 钻井液与完井液, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003
引用本文: 吕开河, 王中义, 黄贤斌, 王金堂, 杨峥, 王韧, 邵子桦. 适用于深水水基钻井液的温敏聚合物流型调节剂[J]. 钻井液与完井液, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003
LYU Kaihe, WANG Zhongyi, HUANG Xianbin, WANG Jintang, YANG Zheng, WANG Ren, SHAO Zihua. A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003
Citation: LYU Kaihe, WANG Zhongyi, HUANG Xianbin, WANG Jintang, YANG Zheng, WANG Ren, SHAO Zihua. A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003

适用于深水水基钻井液的温敏聚合物流型调节剂

doi: 10.3969/j.issn.1001-5620.2021.01.003
基金项目: 

国家自然科学基金重大项目“井筒工作液与天然气水合物储层作用机理和调控方法”(51991361);中石油重大科技专项“井筒工作液与天然气水合物储层作用机理和调控方法”(ZD2019-184-003)

详细信息
    作者简介:

    吕开河,教授,博导,1970年生,主要从事井壁稳定、油气层保护及油田化学剂开发方面的研究工作。E-mail:19930006@upc.edu.cn

  • 中图分类号: TE254.4

A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling

  • 摘要: 针对深水水基钻井液低温流变调控的要求,利用温敏聚合物在对温度响应的过程中有显著的流体力学体积和分子构象变化的性质,以N-异丙基丙烯酰胺(NIPAM)和丙烯酰胺(AM)为单体,合成了一种流型调节剂PNAAM。通过傅里叶红外光谱(FT-IR)表征了产物的官能团。热重分析显示产物初始热分解温度在300℃。浊度分析显示,单体配比和盐浓度均是通过影响分子链中亲水基团与水分子氢键的强度来影响产物的LCST(低临界溶解温度)。PNAAM在钻井液中4、25和65℃流变参数比值为AV4℃AV25℃AV65℃=1.75∶1.22∶1、PV4℃PV25℃PV65℃=1.8∶1.4∶1、YP4℃YP25℃YP65℃=1.8∶1∶1.09。机理分析认为,温度小于LCST时,分子链中亲水基酰胺基团做主导,PNAAM分子溶于水,无可测量的流体力学半径;温度大于LCST时,分子链中疏水基做主导,PNAAM分子链之间疏水缔合作用增强,形成三维网状结构,黏度增大,聚合物粒度增大,泥饼膨润土颗粒更加致密有序。

     

  • [1] 邱正松,赵欣. 深水钻井液技术现状与发展趋势[J]. 特种油气藏,2013,20(3):1-7.

    QIU Zhengsong, ZHAO Xin. Current situation and development trend of deepwater drilling fluid technology[J]. Special Oil & Gas Reservoir, 2013,20(3):1-7.
    [2] 邱正松,徐加放,赵欣,等.深水钻井液关键技术研究[J]. 石油钻探技术, 2011, 39(2):27-34.

    QIU Zhengsong,XU Jiafang, ZHAO Xin, et al. Research on key technology of deepwater drilling fluid[J]. Petroleum Drilling Technology, 2011, 39(2):27-34.
    [3] 高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60-67.

    GAO Han, XU Lin, XU Mingbiao, et al. Rheological properties of deepwater water-based constant rheology drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018,35(3):60-67.
    [4] 邱正松,李照川,黄维安,等. 无黏土相海水基钻井液低温流变特性[J]. 钻井液与完井液,2016,33(1):42-47.

    QIU Zhengsong, LI Zhaochuan, HUANG Wei'an, et al. Low temperature rheological properties of clay free marine based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016,33(1):42-47.
    [5] 李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液, 2015,32(6):85-88.

    LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deepwater drilling fluid at home and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):85-88.
    [6] 杨洪烈,吴娇,汪夯志,等. 海洋深水钻井液体系研究进展[J]. 化学与生物工程, 2019, 36(12):12-16.

    YANG Honglie, WU Jiao, WANG Hangzhi, et al. Research progress of offshore deepwater drilling fluid system[J]. Chemistry & Bioengineering, 2019, 36(12):12-16.
    [7] 邹星星,李佳旭,刘彦青,等. 深水钻井抗高温水基钻井液体系研究及应用[J]. 钻采工艺,2020,43(2):99-102.

    ZOU Xingxing,LI Jiaxu, LIU Yanqing, et al. Research and application of high temperature resistant water-based drilling fluid system for deep water drilling[J]. Drilling & Production Technology, 2020, 43(2):99-102.
    [8] 杨双春,宋洪瑞,郭奇,等. 钻井液用流型调节剂的研究进展[J]. 精细化工,2020,37(9):1-15.

    YANG Shuangchun,SONG Hongrui, GUO Qi, et al. Research progress of rheology modifier for drilling fluids[J]. Fine Chemicals,2020,37(9):1-15..
    [9] 李路,许明标,由福昌,等. 一种深水用白油基恒流变钻井液体系的建立与评价[J]. 当代化工,2017,46(2):268-270.

    LI Lu,XU Mingbiao, YOU Fuchang, et al. Establishment and evaluation of a white oil-based rheostatic drilling fluid system for deep water[J]. Contemporary Chemical Engineering, 2017,46(2):268-270.
    [10] 黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196.

    HUANG Meng, XU Lin,XU Jie, et al. Preparation and performance evaluation of water-based rheostatic drilling fluid flow pattern regulator[J]. Oilfield Chemistry, 2018, 35(2):191-196.
    [11] 霍宝玉,彭商平,于志纲,等. 一种深水水基无黏土恒流变钻井液体系[J]. 钻井液与完井液,2013,30(2):29-32.

    HUO Baoyu, PENG Shangping,YU Zhigang, et al. A deepwater water-based clay free constant rheology drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2013,30(2):29-32.
    [12] 王毓. 温度刺激响应型水溶性聚合物的研究进展[J]. 广州化工,2013,41(11):14-17

    ,26. WANG Yu. Research progress of temperature responsive water soluble polymers[J].Guangzhou Chemical Engineering, 2013,41(11):14-17,26.
    [13] BAJPAI A K,SHUKLA S K,BHANU S, et al. Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science,2008,33(11):1088-1118.
    [14] 王伟吉,邱正松,钟汉毅,等. 页岩储层温敏型P (NIPAm-co-AA)/nano-SiO2复合封堵剂的制备及特性[J]. 石油学报,2015,36(3):378-384.

    WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. Shale reservoir temperature sensitive P(NIPAM-co-AA)/nano SiO2. Preparation and characteristics of composite plugging agent[J]. Acta Petroleum Sinica, 2015,36(3):378-384.
    [15] 暴丹,邱正松,赵欣,等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液,2019, 36(3):265-272.

    BAO Dan, QIU Zhengsong, ZHAO Xin, et al. Research prospect of intelligent lost circulation materials based on temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019,36(3):265-272.
    [16] 徐加放,丁廷稷,张瑞,等. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018,39(5):597-603.

    XU Jiafang, DING Tingji, ZHANG Rui, et al. Preparation and performance evaluation of thermosensitive polymer for low temperature rheology control of water-based drilling fluid[J]. Acta petroleum Sinica, 2018,39(5):597-603.
    [17] DONG SHENGYI, HEYDA JAN, YUAN JIAYIN, et al. Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its control by supramolecular host-guest interactions[J]. Chem Comm, 2016, 52:7970.
    [18] JAIN K, VEDARAJAN R, WATANABE M, et al. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers[J]. Polymer Chemistry, 2015,6(38):6819-6825.
    [19] 王中华. 国内外钻井液技术进展及对钻井液的有关认识[J]. 中外能源,2011,16(1):48-60.

    WANG Zhonghua. Progress of drilling fluid technology at home and abroad and relevant understanding of drilling fluid[J]. Sino Foreign Energy, 2011,16(1):48-60.
    [20] 李午辰. 国外新型钻井液的研究与应用[J]. 油田化学, 2012,29(3):362-367.

    LI Wuchen. Research and application of foreign new drilling fluid[J]. Oilfield Chemistry, 2012, 29(3):362-367.
    [21] 岳前升,刘书杰,何保生,等. 深水钻井条件下合成基钻井液流变性[J]. 石油学报,2011, 32(1):145-148.

    YUE Qiansheng, LIU Shujie, HE Baosheng, et al. Rheological properties of synthetic based drilling fluid under deepwater drilling conditions[J]. Acta Petrologica Sinica, 2011, 32(1):145-148.
    [22] 郑莹, 杜淑娟, 高灿柱, 等. 紫外光解法处理AA-AMPS-TBAM废水[J]. 材料保护,2019,52(10):140-143.

    ZHENG Ying, DU Shujuan, GAO Canzhu, et al. UV photolysis treatment of AA-AMPS-TBAM wastewater[J] Material Protection, 2019, 52(10):140-143.
    [23] 王妮,刘铭辉,石文婷,等. 浅析海上平台生产废水含油在线监测技术[J]. 石化技术,2019,26(8):99-101.

    WANG Ni, LIU Minghui, SHI Wenting,et al. Analysis of on-line monitoring technology for oil content in offshore platform production wastewater[J]. Petrochemical Technology, 2019, 26(8):99-101.
    [24] 梁建华,闻德靖,黎美冯,等. 大豆毛油中含磷量检测浊度法研究[J]. 粮食与食品工业,2019, 26(3):70-72.

    LIANG Jianhua, WEN Dejing, LI Meifeng, et al. Study on turbidimetric determination of phosphorus content in soybean crude oil[J]. Cereal & Food Industry, 2019, 26(3):70-72.
    [25] 王中华. 超高温钻井液降滤失剂P(AMPS-AM-AA)/SMP的研制[J]. 石油钻探技术,2010, 38(3):8-12.

    WANG Zhonghua. Development of ultra-high temperature drilling fluid loss reducer P(AMPS-AM-AA)/SMP[J]. Petroleum Drilling Technology, 2010, 38(3):8-12.
    [26] 谢斌强,邱正松. 无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J]. 油田化学,2014,31(4):481-487.

    XIE Binqiang, QIU Zhengsong. Structure, performance and application of solid free drilling fluid ultra high temperature viscosity improver SDKP[J]. Oilfield Chemistry, 2014,31(4):481-487.
    [27] 张碧霞. 基于PNIPAM为温敏嵌段的新型构造共聚物的设计、自组装与生物应用[D]. 陕西师范大学,2014. ZHANG Bixia.Design, self-assembly and biological application of novel structural copolymer based on PNIPAM as temperature sensitive block[D]. Shaanxi Normal University, 2014.
    [28] 张晓飞,周礼,朱莉,等. 基于NIPAM和HEMA的温敏性共聚物水溶液性能研究[J]. 高分子材料科学与工程,2007,23(3):85-87

    ,91. ZHANG Xiaofei, ZHOU Li, ZHU Li, et al. Study on properties of thermosensitive copolymer aqueous solution based on NIPAM and HEMA[J]. Polymer Materials Science & Engineering, 2007,23(3):85-87,91.
    [29] ZHAO XIN,QIU ZHENGSONG,HUANU WEI'AN, et al. Mechanismand method for controlling lowtemperature rheology of water-based drilling fluids in deepwater drilling[J]. Journal of Petroleum Science and Engineering,2017,154:405-416.
    [30] 鄢捷年. 钻井液工艺学[M]. 东营:中国石油大学出社, 2012:62-66. YAN Jienian. Drilling fluid technology[M]. Dongying:China University of Petroleum Press, 2012:62

    -66.
    [31] 陶怀志. 抗高温抗盐钙水基钻井液降滤失剂合成、表征与作用机理研究[D]. 西南石油大学,2012. TAO Huaizhi. Synthesis,characterization and action mechanism of high temperature and salt resistant calcium water-based drilling fluid fluid fluid loss reducer[D]. Southwest Petroleum University, 2012.
  • 加载中
计量
  • 文章访问数:  389
  • HTML全文浏览量:  89
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回