[1] |
邱正松,赵欣. 深水钻井液技术现状与发展趋势[J]. 特种油气藏,2013,20(3):1-7.QIU Zhengsong, ZHAO Xin. Current situation and development trend of deepwater drilling fluid technology[J]. Special Oil & Gas Reservoir, 2013,20(3):1-7.
|
[2] |
邱正松,徐加放,赵欣,等.深水钻井液关键技术研究[J]. 石油钻探技术, 2011, 39(2):27-34.QIU Zhengsong,XU Jiafang, ZHAO Xin, et al. Research on key technology of deepwater drilling fluid[J]. Petroleum Drilling Technology, 2011, 39(2):27-34.
|
[3] |
高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60-67.GAO Han, XU Lin, XU Mingbiao, et al. Rheological properties of deepwater water-based constant rheology drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018,35(3):60-67.
|
[4] |
邱正松,李照川,黄维安,等. 无黏土相海水基钻井液低温流变特性[J]. 钻井液与完井液,2016,33(1):42-47.QIU Zhengsong, LI Zhaochuan, HUANG Wei'an, et al. Low temperature rheological properties of clay free marine based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016,33(1):42-47.
|
[5] |
李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液, 2015,32(6):85-88.LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deepwater drilling fluid at home and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):85-88.
|
[6] |
杨洪烈,吴娇,汪夯志,等. 海洋深水钻井液体系研究进展[J]. 化学与生物工程, 2019, 36(12):12-16.YANG Honglie, WU Jiao, WANG Hangzhi, et al. Research progress of offshore deepwater drilling fluid system[J]. Chemistry & Bioengineering, 2019, 36(12):12-16.
|
[7] |
邹星星,李佳旭,刘彦青,等. 深水钻井抗高温水基钻井液体系研究及应用[J]. 钻采工艺,2020,43(2):99-102.ZOU Xingxing,LI Jiaxu, LIU Yanqing, et al. Research and application of high temperature resistant water-based drilling fluid system for deep water drilling[J]. Drilling & Production Technology, 2020, 43(2):99-102.
|
[8] |
杨双春,宋洪瑞,郭奇,等. 钻井液用流型调节剂的研究进展[J]. 精细化工,2020,37(9):1-15.YANG Shuangchun,SONG Hongrui, GUO Qi, et al. Research progress of rheology modifier for drilling fluids[J]. Fine Chemicals,2020,37(9):1-15..
|
[9] |
李路,许明标,由福昌,等. 一种深水用白油基恒流变钻井液体系的建立与评价[J]. 当代化工,2017,46(2):268-270.LI Lu,XU Mingbiao, YOU Fuchang, et al. Establishment and evaluation of a white oil-based rheostatic drilling fluid system for deep water[J]. Contemporary Chemical Engineering, 2017,46(2):268-270.
|
[10] |
黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196.HUANG Meng, XU Lin,XU Jie, et al. Preparation and performance evaluation of water-based rheostatic drilling fluid flow pattern regulator[J]. Oilfield Chemistry, 2018, 35(2):191-196.
|
[11] |
霍宝玉,彭商平,于志纲,等. 一种深水水基无黏土恒流变钻井液体系[J]. 钻井液与完井液,2013,30(2):29-32.HUO Baoyu, PENG Shangping,YU Zhigang, et al. A deepwater water-based clay free constant rheology drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2013,30(2):29-32.
|
[12] |
王毓. 温度刺激响应型水溶性聚合物的研究进展[J]. 广州化工,2013,41(11):14-17,26. WANG Yu. Research progress of temperature responsive water soluble polymers[J].Guangzhou Chemical Engineering, 2013,41(11):14-17,26.
|
[13] |
BAJPAI A K,SHUKLA S K,BHANU S, et al. Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science,2008,33(11):1088-1118.
|
[14] |
王伟吉,邱正松,钟汉毅,等. 页岩储层温敏型P (NIPAm-co-AA)/nano-SiO2复合封堵剂的制备及特性[J]. 石油学报,2015,36(3):378-384.WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. Shale reservoir temperature sensitive P(NIPAM-co-AA)/nano SiO2. Preparation and characteristics of composite plugging agent[J]. Acta Petroleum Sinica, 2015,36(3):378-384.
|
[15] |
暴丹,邱正松,赵欣,等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液,2019, 36(3):265-272.BAO Dan, QIU Zhengsong, ZHAO Xin, et al. Research prospect of intelligent lost circulation materials based on temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019,36(3):265-272.
|
[16] |
徐加放,丁廷稷,张瑞,等. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018,39(5):597-603.XU Jiafang, DING Tingji, ZHANG Rui, et al. Preparation and performance evaluation of thermosensitive polymer for low temperature rheology control of water-based drilling fluid[J]. Acta petroleum Sinica, 2018,39(5):597-603.
|
[17] |
DONG SHENGYI, HEYDA JAN, YUAN JIAYIN, et al. Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its control by supramolecular host-guest interactions[J]. Chem Comm, 2016, 52:7970.
|
[18] |
JAIN K, VEDARAJAN R, WATANABE M, et al. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers[J]. Polymer Chemistry, 2015,6(38):6819-6825.
|
[19] |
王中华. 国内外钻井液技术进展及对钻井液的有关认识[J]. 中外能源,2011,16(1):48-60.WANG Zhonghua. Progress of drilling fluid technology at home and abroad and relevant understanding of drilling fluid[J]. Sino Foreign Energy, 2011,16(1):48-60.
|
[20] |
李午辰. 国外新型钻井液的研究与应用[J]. 油田化学, 2012,29(3):362-367.LI Wuchen. Research and application of foreign new drilling fluid[J]. Oilfield Chemistry, 2012, 29(3):362-367.
|
[21] |
岳前升,刘书杰,何保生,等. 深水钻井条件下合成基钻井液流变性[J]. 石油学报,2011, 32(1):145-148.YUE Qiansheng, LIU Shujie, HE Baosheng, et al. Rheological properties of synthetic based drilling fluid under deepwater drilling conditions[J]. Acta Petrologica Sinica, 2011, 32(1):145-148.
|
[22] |
郑莹, 杜淑娟, 高灿柱, 等. 紫外光解法处理AA-AMPS-TBAM废水[J]. 材料保护,2019,52(10):140-143.ZHENG Ying, DU Shujuan, GAO Canzhu, et al. UV photolysis treatment of AA-AMPS-TBAM wastewater[J] Material Protection, 2019, 52(10):140-143.
|
[23] |
王妮,刘铭辉,石文婷,等. 浅析海上平台生产废水含油在线监测技术[J]. 石化技术,2019,26(8):99-101.WANG Ni, LIU Minghui, SHI Wenting,et al. Analysis of on-line monitoring technology for oil content in offshore platform production wastewater[J]. Petrochemical Technology, 2019, 26(8):99-101.
|
[24] |
梁建华,闻德靖,黎美冯,等. 大豆毛油中含磷量检测浊度法研究[J]. 粮食与食品工业,2019, 26(3):70-72.LIANG Jianhua, WEN Dejing, LI Meifeng, et al. Study on turbidimetric determination of phosphorus content in soybean crude oil[J]. Cereal & Food Industry, 2019, 26(3):70-72.
|
[25] |
王中华. 超高温钻井液降滤失剂P(AMPS-AM-AA)/SMP的研制[J]. 石油钻探技术,2010, 38(3):8-12.WANG Zhonghua. Development of ultra-high temperature drilling fluid loss reducer P(AMPS-AM-AA)/SMP[J]. Petroleum Drilling Technology, 2010, 38(3):8-12.
|
[26] |
谢斌强,邱正松. 无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J]. 油田化学,2014,31(4):481-487.XIE Binqiang, QIU Zhengsong. Structure, performance and application of solid free drilling fluid ultra high temperature viscosity improver SDKP[J]. Oilfield Chemistry, 2014,31(4):481-487.
|
[27] |
张碧霞. 基于PNIPAM为温敏嵌段的新型构造共聚物的设计、自组装与生物应用[D]. 陕西师范大学,2014. ZHANG Bixia.Design, self-assembly and biological application of novel structural copolymer based on PNIPAM as temperature sensitive block[D]. Shaanxi Normal University, 2014.
|
[28] |
张晓飞,周礼,朱莉,等. 基于NIPAM和HEMA的温敏性共聚物水溶液性能研究[J]. 高分子材料科学与工程,2007,23(3):85-87,91. ZHANG Xiaofei, ZHOU Li, ZHU Li, et al. Study on properties of thermosensitive copolymer aqueous solution based on NIPAM and HEMA[J]. Polymer Materials Science & Engineering, 2007,23(3):85-87,91.
|
[29] |
ZHAO XIN,QIU ZHENGSONG,HUANU WEI'AN, et al. Mechanismand method for controlling lowtemperature rheology of water-based drilling fluids in deepwater drilling[J]. Journal of Petroleum Science and Engineering,2017,154:405-416.
|
[30] |
鄢捷年. 钻井液工艺学[M]. 东营:中国石油大学出社, 2012:62-66. YAN Jienian. Drilling fluid technology[M]. Dongying:China University of Petroleum Press, 2012:62-66.
|
[31] |
陶怀志. 抗高温抗盐钙水基钻井液降滤失剂合成、表征与作用机理研究[D]. 西南石油大学,2012. TAO Huaizhi. Synthesis,characterization and action mechanism of high temperature and salt resistant calcium water-based drilling fluid fluid fluid loss reducer[D]. Southwest Petroleum University, 2012.
|