[1] |
RODERICK B PERNITES, ASHOK K SANTRA. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016,(72):89-103.
|
[2] |
MAHADEVAN, THIRUVILLA S, DU JINCHENG. Hydration and reaction mechanisms on sodium silicate glass surfaces from molecular dynamics simulations with reactive force fields[J]. Journal of the American Ceramic Society, 2020, 103(6):3676-3690.
|
[3] |
SKIBSTED, SNELLINGS. Reactivity of supplementary cementitious materials(SCMs)in cement blends[J]. Cement and Concrete Research, 2019, 124:1-16.
|
[4] |
GUO SHUAICHENG, DAI QINGLI, CHANG LIANG, et al. Kinetic analysis and thermodynamic simulation of alkali-silica reaction in cementitious materials[J]. Journal of the American Ceramic Society, 2018, 102(3):1463-1478.
|
[5] |
姚晓, 葛荘, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1):17-23.YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23.
|
[6] |
CUI CHONG, ZHAO QINYI. Morphology and porosity of the insoluble matter produced by activated xonotlite[EB/OL].Beijing:Sciencepaper Online[2017-03-29].http://www.paper.edu.cn/releasepaper/content/201703-380.
|
[7] |
FARSHADRAJABIPOUR, ERIC GIANNINI, CYRILLE DUNANT, et al. Alkali-silica reaction:Current understanding of the reaction mechanisms and the knowledge gaps[J]. Cement and Concrete Research, 2015, 76:130-146.
|
[8] |
FOURNIER R O, POTTER R W. An equation correlating the solubility of quartz in water from 25℃ to 900℃ at pressure up to 10000 bar[J].Geochim Cosmochim, 1982, 46(10):1969-1973.
|
[9] |
KENNEDY G C. A portion of the system silica-water[J]. Econ Geol, 1950, 45(7):629-665.
|
[10] |
MARSHALL W L. Amorphous silica solubilities-I. Behavior in aqueous sodium nitratesolutions; 25-300℃,0-6 molar[J]. Geochimica Cosmochimicaacta, 1980, 44(7):907-913.
|
[11] |
CHEN C A, MARSHALL W. Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350℃[J]. Geochimica et Cosmochimica, 1982, 46(2):279-287.
|
[12] |
LUKE. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180℃[J]. Cement and Concrete Research, 2004, 34(9):1725-1732.
|
[13] |
张鑫, 魏浩光, 刘健, 等. 180℃液硅防气窜剂粒径优化及性能研究[J]. 钻井液与完井液, 2020, 37(1):97-102.ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, et al. Study on particle size optimization and performance of a silica water suspension as anti gas channeling agent at 180℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):97-102.
|
[14] |
SHEN Peiliang, LU Linnu, HE Yongjia, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultrahigh performance concrete[J]. Cement and Concrete Research, 2019, 118:1-13.
|
[15] |
BRUNO, GULLYTY, JUILO, et al. Silica content influence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633.
|
[16] |
HE YONGJIA, RUITAO M, LU LINNU, et al. Hydration products of cement-silica fume-quartz powder mixture under different curing regimes[J]. Journal of Wuhan University of Technology(Materials ence), 2017, 32(3):598-602.
|
[17] |
姜洪义, 陈小佳. 不同硅质材料对水热合成硬硅钙石的影响[J]. 硅酸盐通报, 2008, 27(1):188-190.JIANG Hongyi, CHEN Xiaojia. Hydrothermal synthesis of xonotlite by different silicon material[J]. Bulletin of The Chinese Ceramic Society, 2008, 27(1):188-190.
|
[18] |
魏浩光, 张鑫, 丁士东, 等. PEG对纳米硅水泥浆触变性改善的研究[J]. 钻井液与完井液, 2018, 35(4):82-86.WEI Haoguang, ZHANG xin, DING Shidong, et al. Rheological improvement of nano-phase silicon cement slurry with polyglycol[J].Drilling Fluid & Completion Fluid, 2018, 35(4):82-86.
|
[19] |
熊俊杰, 李春, 杨生文, 等. 硼修饰纳米二氧化硅交联剂研发及性能评价[J]. 钻井液与完井液,2019,36(2):245-249.XIONG Junjie, LI Chun, YANG Shengwen,et al. Development and performance evaluation of a boronmodified nanosilica crosslinking agent[J].Drilling Fluid & Completion Fluid, 2019, 36(2):245-249.
|
[20] |
CH NOIK. Oilwell cement durability[R]. SPE 56538, 1999.
|
[21] |
EILERS L H, NELSON E B, MORAN L K. Hightemperature cement compositions-pectolite, scawtite, truscottite, or xonotlite:which do you want?[J]. Journal of Petroleum Technology, 1983, 35(7):1373-1377.
|
[22] |
格鲁特FF. 岩石手册[M]. 张瑞锡, 汪正然, 译. 上海:上海科学技术出版社, 1959:44-60, 121-164, 179-190. GROUT F F. Rock hand book[M]. ZHANG Ruixi, WANG Zhengran, translated. Shanghai:Shanghai Scientific & Technical Publishers, 1959:44-60, 121-164, 179-190.
|
[23] |
BRANDL A, BRAY W S, DOHERTY D R. Technically and economically improved cementing system with sustainable components[R]. SPE 136276, 2010.
|
[24] |
EILERS. Long-term effects of high temperature on strength retrogression of cements[R]. SPE 5871, 1976.
|
[25] |
D STILES. Effects of long-term exposure to ultrahigh temperature on the mechanical parameters of cement[R]. IADC/SPE 98896, 2006.
|
[26] |
ZEESHAN, MOBEEN, MOHAMED.Effects of nanoclay and silica flour on the mechanicalproperties of class g cement[J]. Asc Omega, 2020, 5(20):11643-11654.
|
[27] |
BLACK L, GARBEV K, STUMM A. Structure, bonding and morphology of hydrothermally synthesized xonotlite[J]. Advances in Applied Ceramics, 2009, 108(3):137-144.
|
[28] |
NICHOLA J COLEMAN, DAVID S BRASSINGTON. Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue:a feasibility study[J]. Materials Research Bulletin, 2003, 38(3):485-497.
|
[29] |
KRAKOWIAK, THOMAS, MUSSO, et al. Nanochemo-mechanical signature of conventional oil-well cement systems:Effect of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67:103-121.
|