留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2晶态物性对高温水泥石力学性能的影响

耿晨梓 姚晓 代丹 黎学年 姜涛 闫联国 吴学超

耿晨梓, 姚晓, 代丹, 黎学年, 姜涛, 闫联国, 吴学超. SiO2晶态物性对高温水泥石力学性能的影响[J]. 钻井液与完井液, 2020, 37(6): 777-783. doi: 10.3969/j.issn.1001-5620.2020.06.017
引用本文: 耿晨梓, 姚晓, 代丹, 黎学年, 姜涛, 闫联国, 吴学超. SiO2晶态物性对高温水泥石力学性能的影响[J]. 钻井液与完井液, 2020, 37(6): 777-783. doi: 10.3969/j.issn.1001-5620.2020.06.017
GENG Chenzi, YAO Xiao, DAI Dan, LI Xuenian, JIANG Tao, YAN Lianguo, WU Xuechao. Effects of Physical Properties of SiO2 Crystalline State on Mechanical Properties of High Temperature Set Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 777-783. doi: 10.3969/j.issn.1001-5620.2020.06.017
Citation: GENG Chenzi, YAO Xiao, DAI Dan, LI Xuenian, JIANG Tao, YAN Lianguo, WU Xuechao. Effects of Physical Properties of SiO2 Crystalline State on Mechanical Properties of High Temperature Set Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 777-783. doi: 10.3969/j.issn.1001-5620.2020.06.017

SiO2晶态物性对高温水泥石力学性能的影响

doi: 10.3969/j.issn.1001-5620.2020.06.017
基金项目: 

中海油田服务有限公司项目“水泥石热衰退规律研究”(G2017A-0521G523)资助;江苏高校优势学科建设工程资助项目(PAPD)

详细信息
    作者简介:

    耿晨梓,在读研究生。电话18888125410;E-mail:201961203096@njtech.edu.cn

    通讯作者:

    姚晓,博士,教授,博士生导师。E-mail:yaoxiao@njtech.edu.cn

  • 中图分类号: TE256

Effects of Physical Properties of SiO2 Crystalline State on Mechanical Properties of High Temperature Set Cement

  • 摘要: 油井水泥石高温力学性能衰退会对深层油气井安全性及服役寿命造成很大影响。研究水泥石高温强度衰退规律将有助于改善水泥石的长期高温力学性能。硅溶出是造成水泥石高温力学性能衰退的主要原因之一,但未引起重视。重点研究了温度对不同晶态硅溶解度的影响,并结合高温加砂水泥石抗压强度进行分析。结果表明,硅溶解度随温度上升而增加,相同温度下非晶硅的溶解度远大于晶体硅;随硅溶解度的增大,水化前期的硅溶解促进水泥石早期高温抗压强度发展,高温反应后期水化产物会发生硅溶出,造成水泥石高温强度衰退;静态水中水泥石高温抗压强度比动态水中更高且更加稳定;养护环境中硅饱和程度高,水泥石的高温力学性能更稳定。从高温硅溶出角度分析,以晶体硅为主,少量非晶硅为辅的不同晶态硅将有助于保持水泥石高温力学性能稳定。

     

  • [1] RODERICK B PERNITES, ASHOK K SANTRA. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016,(72):89-103.
    [2] MAHADEVAN, THIRUVILLA S, DU JINCHENG. Hydration and reaction mechanisms on sodium silicate glass surfaces from molecular dynamics simulations with reactive force fields[J]. Journal of the American Ceramic Society, 2020, 103(6):3676-3690.
    [3] SKIBSTED, SNELLINGS. Reactivity of supplementary cementitious materials(SCMs)in cement blends[J]. Cement and Concrete Research, 2019, 124:1-16.
    [4] GUO SHUAICHENG, DAI QINGLI, CHANG LIANG, et al. Kinetic analysis and thermodynamic simulation of alkali-silica reaction in cementitious materials[J]. Journal of the American Ceramic Society, 2018, 102(3):1463-1478.
    [5] 姚晓, 葛荘, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1):17-23.

    YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23.
    [6] CUI CHONG, ZHAO QINYI. Morphology and porosity of the insoluble matter produced by activated xonotlite[EB/OL].Beijing:Sciencepaper Online[2017-03-29].http://www.paper.edu.cn/releasepaper/content/201703-380.
    [7] FARSHADRAJABIPOUR, ERIC GIANNINI, CYRILLE DUNANT, et al. Alkali-silica reaction:Current understanding of the reaction mechanisms and the knowledge gaps[J]. Cement and Concrete Research, 2015, 76:130-146.
    [8] FOURNIER R O, POTTER R W. An equation correlating the solubility of quartz in water from 25℃ to 900℃ at pressure up to 10000 bar[J].Geochim Cosmochim, 1982, 46(10):1969-1973.
    [9] KENNEDY G C. A portion of the system silica-water[J]. Econ Geol, 1950, 45(7):629-665.
    [10] MARSHALL W L. Amorphous silica solubilities-I. Behavior in aqueous sodium nitratesolutions; 25-300℃,0-6 molar[J]. Geochimica Cosmochimicaacta, 1980, 44(7):907-913.
    [11] CHEN C A, MARSHALL W. Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350℃[J]. Geochimica et Cosmochimica, 1982, 46(2):279-287.
    [12] LUKE. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180℃[J]. Cement and Concrete Research, 2004, 34(9):1725-1732.
    [13] 张鑫, 魏浩光, 刘健, 等. 180℃液硅防气窜剂粒径优化及性能研究[J]. 钻井液与完井液, 2020, 37(1):97-102.

    ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, et al. Study on particle size optimization and performance of a silica water suspension as anti gas channeling agent at 180℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):97-102.
    [14] SHEN Peiliang, LU Linnu, HE Yongjia, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultrahigh performance concrete[J]. Cement and Concrete Research, 2019, 118:1-13.
    [15] BRUNO, GULLYTY, JUILO, et al. Silica content influence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633.
    [16] HE YONGJIA, RUITAO M, LU LINNU, et al. Hydration products of cement-silica fume-quartz powder mixture under different curing regimes[J]. Journal of Wuhan University of Technology(Materials ence), 2017, 32(3):598-602.
    [17] 姜洪义, 陈小佳. 不同硅质材料对水热合成硬硅钙石的影响[J]. 硅酸盐通报, 2008, 27(1):188-190.

    JIANG Hongyi, CHEN Xiaojia. Hydrothermal synthesis of xonotlite by different silicon material[J]. Bulletin of The Chinese Ceramic Society, 2008, 27(1):188-190.
    [18] 魏浩光, 张鑫, 丁士东, 等. PEG对纳米硅水泥浆触变性改善的研究[J]. 钻井液与完井液, 2018, 35(4):82-86.

    WEI Haoguang, ZHANG xin, DING Shidong, et al. Rheological improvement of nano-phase silicon cement slurry with polyglycol[J].Drilling Fluid & Completion Fluid, 2018, 35(4):82-86.
    [19] 熊俊杰, 李春, 杨生文, 等. 硼修饰纳米二氧化硅交联剂研发及性能评价[J]. 钻井液与完井液,2019,36(2):245-249.

    XIONG Junjie, LI Chun, YANG Shengwen,et al. Development and performance evaluation of a boronmodified nanosilica crosslinking agent[J].Drilling Fluid & Completion Fluid, 2019, 36(2):245-249.
    [20] CH NOIK. Oilwell cement durability[R]. SPE 56538, 1999.
    [21] EILERS L H, NELSON E B, MORAN L K. Hightemperature cement compositions-pectolite, scawtite, truscottite, or xonotlite:which do you want?[J]. Journal of Petroleum Technology, 1983, 35(7):1373-1377.
    [22] 格鲁特FF. 岩石手册[M]. 张瑞锡, 汪正然, 译. 上海:上海科学技术出版社, 1959:44-60, 121-164

    , 179-190. GROUT F F. Rock hand book[M]. ZHANG Ruixi, WANG Zhengran, translated. Shanghai:Shanghai Scientific & Technical Publishers, 1959:44-60, 121-164, 179-190.
    [23] BRANDL A, BRAY W S, DOHERTY D R. Technically and economically improved cementing system with sustainable components[R]. SPE 136276, 2010.
    [24] EILERS. Long-term effects of high temperature on strength retrogression of cements[R]. SPE 5871, 1976.
    [25] D STILES. Effects of long-term exposure to ultrahigh temperature on the mechanical parameters of cement[R]. IADC/SPE 98896, 2006.
    [26] ZEESHAN, MOBEEN, MOHAMED.Effects of nanoclay and silica flour on the mechanicalproperties of class g cement[J]. Asc Omega, 2020, 5(20):11643-11654.
    [27] BLACK L, GARBEV K, STUMM A. Structure, bonding and morphology of hydrothermally synthesized xonotlite[J]. Advances in Applied Ceramics, 2009, 108(3):137-144.
    [28] NICHOLA J COLEMAN, DAVID S BRASSINGTON. Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue:a feasibility study[J]. Materials Research Bulletin, 2003, 38(3):485-497.
    [29] KRAKOWIAK, THOMAS, MUSSO, et al. Nanochemo-mechanical signature of conventional oil-well cement systems:Effect of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67:103-121.
  • 加载中
计量
  • 文章访问数:  576
  • HTML全文浏览量:  170
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-25
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回