留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐交变超高温固井水泥浆

张弘 杨燕 余文艳 李路宽 张兴国

张弘, 杨燕, 余文艳, 李路宽, 张兴国. 耐交变超高温固井水泥浆[J]. 钻井液与完井液, 2020, 37(6): 771-776. doi: 10.3969/j.issn.1001-5620.2020.06.016
引用本文: 张弘, 杨燕, 余文艳, 李路宽, 张兴国. 耐交变超高温固井水泥浆[J]. 钻井液与完井液, 2020, 37(6): 771-776. doi: 10.3969/j.issn.1001-5620.2020.06.016
ZHANG Hong, YANG Yan, YU Wenyan, LI Lukuan, ZHANG Xingguo. A Cementing Slurry Used in Alternating Ultra-High Temperatures[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 771-776. doi: 10.3969/j.issn.1001-5620.2020.06.016
Citation: ZHANG Hong, YANG Yan, YU Wenyan, LI Lukuan, ZHANG Xingguo. A Cementing Slurry Used in Alternating Ultra-High Temperatures[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 771-776. doi: 10.3969/j.issn.1001-5620.2020.06.016

耐交变超高温固井水泥浆

doi: 10.3969/j.issn.1001-5620.2020.06.016
详细信息
    作者简介:

    张弘,硕士研究生,1994年生,油气井工程专业,主要从事稠油热采固井水泥浆体系研究。电话15928479401;E-mail:759719754@qq.com

    通讯作者:

    张兴国,副教授。E-mail:772376058@qq.com

  • 中图分类号: TE256.6

A Cementing Slurry Used in Alternating Ultra-High Temperatures

  • 摘要: 在稠油热采井中,交变超高温将对固井水泥石的力学性能造成巨大影响。为研制抗高温能力强的水泥浆体系,基于XRD、TG、氮吸附及SEM方法,研究了交变超高温下偏高岭土和石墨对水泥石抗压强度、水化产物化学结构及微观结构的影响。研究结果表明,交变超高温可使常规加砂水泥石C—S—H的形态由“链状”或“网状”转变为“颗粒状”,破坏水泥石的结构完整性,从而降低其抗压强度;掺入偏高岭土和石墨后,可提高常规加砂水泥石耐交变超高温能力,且对水泥石物相组成影响不大;偏高岭土有颗粒填充作用和火山灰效应,且石墨与水泥基体界面胶结良好,使其二维方向上起到拔出作用,提高了水泥石结构完整性及力学性能。该研究结果可为稠油热采井固井水泥浆体系的性能评价及配方优化提供参考。

     

  • [1] FUENMAYOR M, OROZCO D, NIETO H, et al. Longterm calcium phosphate cement for in-situ combustion project[C]. SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers, 2014:2-7.
    [2] 江航, 许强辉, 马德胜, 等. 注空气开采过程中稠油结焦量影响因素[J]. 石油学报, 2016, 37(8):1030-1036.

    JIANG Hang, XU Qianghui, MA Desheng, et al. Influencing factors of heavy oil coking amount in air injection production[J]. Journal of Petroleum, 2016, 37(8):1030-1036.
    [3] 李萍, 刘志龙, 邹剑, 等. 渤海旅大27-2油田蒸汽吞吐先导试验注采过程[J]. 石油学报, 2016, 37(2):242-247.

    LI Ping, LIU Zhilong, ZOU Jian, et al. Injection and production project of pilot test on steam huff-puff in oilfield LD27-2, Bohai Sea[J]. Journal of Petroleum, 2016, 37(2):242-247.
    [4] 张兆祥, 刘慧卿, 杨阳, 等. 稠油油藏蒸汽驱评价新方法[J]. 石油学报, 2014, 35(4):733-738.

    ZHANG Zhaoxiang, LIU Huiqing, YANG Yang, et al. New evaluation method of steam flooding in heavy oil reservoir[J]. Journal of Petroleum, 2014, 35(4):733-738.
    [5] 张景富. G级油井水泥的水化硬化及性能[D]. 浙江大学, 2001. ZHANG Jingfu. Hydration hardening and properties of G-grade oil well cement[D]. Zhejiang University, 2001.
    [6] 杨智光, 崔海清, 肖志兴, 等. 深井高温条件下油井水泥强度变化规律研究[J]. 石油学报, 2008, 29(3):435-437.

    YANG Zhiguang, CUI Haiqing, XIAO Zhixing, et al. Study on the strength change of oil well cement under the condition of high temperature in deep well[J]. Journal of Petroleum, 2008, 29(3):435-437.
    [7] 沙林浩, 高永会, 燕平, 等. 河南油田新庄、杨楼区块稠油热采井固井水泥浆[J]. 钻井液与完井液, 2007, 24(5):41-43.

    SHA Linhao, GAO Yonghui, YAN Ping, et al. Cementing slurry for heavy oil thermal recovery wells in Xinzhuang and Yanglou blocks of Henan Oilfield[J]. Drilling Fluid & Completion Fluid, 2007, 24(5):41-43.
    [8] 高飞, 李永刚, 孙浩, 等. 热采井用固井水泥石养护方法及力学性能研究[J]. 钻井液与完井液, 2019,36(6):731-736.

    GAO Fei, LI Yonggang, SUN Hao, et al. Study on curing method and mechanical properties of cementing cement for thermal recovery wells[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):731-736.
    [9] WANG C, CHEN X, WEI X, et al. Can nanosilica sol prevent oil well cement from strength retrogression under high temperature?[J]. Construction & Building Materials, 2017, 144(30):574-585.
    [10] GÖKÇE H S. High temperature resistance of boron active belite cement mortars containing fly ash[J]. Journal of Cleaner Production, 2019, 211(20):992-1000.
    [11] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 19139-2012油井水泥试验方法[S]. 北京:中国标准出版社, 2012. General Administration of quality supervision, inspection and Quarantine of the people's Republic of China, China National Standardization Administration. GB/T 19139-2012 Test methods for oil well cement[S]. Beijing:China Standard Press, 2012.
    [12] LIU K, CHENG X, ZHANG C, et al. Evolution of pore structure of oil well cement slurry in suspension-solid transition stage[J]. Construction and Building Materials, 2019, 214(30):382-398.
    [13] PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103.
    [14] 程小伟, 刘开强, 李早元, 等. 油井水泥浆液-固态演变的结构与性能[J]. 石油学报, 2016, 37(10):1287-1292.

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and performance of oil well cement slurry solid state evolution[J]. Journal of Petroleum, 2016,37(10):1287-1292.
    [15] RAFIEE M A, NARAYANAN T N, HASHIM D P, et al. Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites[J]. Advanced Functional Materials, 2013, 23(45):5624-5630.
    [16] ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9):3015-3024.
  • 加载中
计量
  • 文章访问数:  593
  • HTML全文浏览量:  186
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回