Synthesis and Performance Evaluation of High Temperature Oil Well Cement Retarder ZRT-1
-
摘要: 针对水溶性聚合物在水泥浆中耐高温性能的局限性,笔者突破传统水溶性共聚物的研究思路,设计了无机非金属材料-有机聚合物高温缓凝剂ZRT-1,通过正交实验法及单因素法确定了ZRT-1的最佳合成工艺,AMPS:IA:AA的物质的量比为7.0:1.5:1.5,偶联剂加量为0.5%,无机材料加量为1%,引发剂加量为1.5%,单体质量分数为30%,pH值为4,反应温度为65℃,反应时间为8 h ;分别采用红外光谱(FT-IR),热重分析(DSC/DTG)、凝胶渗透色谱(GPC)等对ZRT-1进行了表征。结果显示,ZRT-1具有预期结构和官能团,热稳定性好,重均分子量为10 091,数均分子量为2020,分子量分布为4.99 ;对ZRT-1的性能评价结果表明,水泥浆稠化时间随ZRT-1加量的增加呈线性增加,随着温度的升高也呈线性降低,具有加量和温度可调性;ZRT-1加量为0.4%~1.5%时,水泥浆在114~230℃、54~90 MPa时的稠化时间在200~400 min之间可调,稠化曲线平稳,过渡时间短且呈直角稠化。Abstract: A high temperature retarder ZRT-1 was synthesized with a nonmetallic material and an organic polymer. The development of ZRT-1 is to overcome the high temperature stability limitation of water soluble polymers used in cement slurries. The optimum synthesis process was determined using orthogonal test and single factor method; the molar ratio of the monomers was: AMPS:IA:AA = 7.0:1.5:1.5. The concentrations of the coupling agent, the inorganic material and the initiator were 0.5%, 1% and 1.5%. The mass fraction of the monomers was 30%. The pH of the reaction was 4, the reaction temperature 65 ℃, and the reaction time 8 h. Characterization of the synthetic product by FT-IR, DSC/DTG and GPC showed that ZRT-1 had the molecular structure and functional groups required. The molecular structure and functional groups render ZRT-1 good thermal stability. ZRT-1 had a weight average molecular weight (Mw) of 10091, a number average molecular weight (Mn) of 2020, and a molecular weight distribution of 4.99. Evaluation of ZRT-1 showed that the thickening time of a cement slurry linearly increased the concentration of ZRT-1, and linearly decreased with temperature. A cement slurry treated with 0.4%-1.5% ZRT-1 had a thickening time between 200 min and 400 min at 114-230 ℃/54-90 MPa, and the thickening curve changed smoothly. The cement slurry also showed short transition time and rightangled thickening curve.
-
[1] PERNITE R, CLARK J, SANTARA A, et al.New polymeric high temperature cement retarder with synergistic suspending aid property in fluid loss control polymers[C].SPE-184556-MS, 2017. [2] LIU Huajie, BU Yuhuan, TIA Leiju, et al. Suitability of amphoteric ion polymer as retarder for calcium aluminate phosphate cement[C]. ISOPE-I-18-100, 2018. [3] 孙欣,曾林.AMPS聚合物类油井水泥缓凝剂研究进展[J].青岛科技大学学报(自然科学版), 2015, 36(2):1-3. SUN Xin, ZENG Lin.Research progress of well cement retarder with polymers[J].Journal of Qingdao University of Science and Technology (Natural Science Edition), 2015, 36(2):1-3. [4] 卢娅,李明,郭子涵,等.聚合物类油井水泥缓凝剂的研究现状概述[J].塑料工业, 2016, 44(2):23-26.LU Ya, LI Ming, GUO Zihan, et al.Advances in polymer-based oil well cement retarder[J].China Plastics Industry, 2016, 44(2):23-26. [5] 彭志刚,张博建,冯茜聚,等.聚合物插层蒙脱土复合型高温缓凝剂的制备及性能[J].硅酸盐学报, 2018, 46(8):1087-1094.PENG Zhigang, ZHANG Bojian, FENG Qian, et al. Preparation and performance of polymer intercalated montmorillonite composites for high-temperature retarder[J].The Journal of Silicate, 2018, 46(8):1087-1094. [6] 严思明,吴亚楠,杨圣月,等.高温缓凝剂AMCT的合成及其性能评价[J].精细化工, 2017, 34(5):562-568.YAN Siming, WU Yanan, YANG Shengyue, et al. Synthesis and evaluation of high temperature retarder AMCT[J].Fine Chemicals, 2017, 34(5):562-568. -

计量
- 文章访问数: 770
- HTML全文浏览量: 246
- PDF下载量: 207
- 被引次数: 0