留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温早强低水化放热水泥浆体系开发

郭永宾 李中 刘和兴 董钊 吴志明 马传华

郭永宾, 李中, 刘和兴, 董钊, 吴志明, 马传华. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液, 2019, 36(4): 500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019
引用本文: 郭永宾, 李中, 刘和兴, 董钊, 吴志明, 马传华. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液, 2019, 36(4): 500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019
GUO Yongbin, LI Zhong, LIU Hexing, DONG Zhao, WU Zhiming, MA Chuanhua. Development of a Low Temperature Early Strength Cement Slurry with Low Exothermic Heat of Hydration[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(4): 500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019
Citation: GUO Yongbin, LI Zhong, LIU Hexing, DONG Zhao, WU Zhiming, MA Chuanhua. Development of a Low Temperature Early Strength Cement Slurry with Low Exothermic Heat of Hydration[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(4): 500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019

低温早强低水化放热水泥浆体系开发

doi: 10.3969/j.issn.1001-5620.2019.04.019
基金项目: 

国家重大专项“深水油气田开发钻完井工程关键技术研究及配套工艺”(2016ZX05028-001-09)

详细信息
    作者简介:

    郭永宾,1973年生,1996年毕业于中国石油大学(华东),现主要从事海洋石油钻完井技术研究工作。电话(0759)3911530;E-mail:guoyb@cnooc.com.cn

  • 中图分类号: TE256

Development of a Low Temperature Early Strength Cement Slurry with Low Exothermic Heat of Hydration

  • 摘要: 深水水合物地层的特殊环境要求固井水泥具有低水化放热和低温早强特性,而现有的固井水泥浆体系大多不具备低水化放热特性,而且低温水化速度较慢。为此,提出了低温早强低水化放热水泥浆体系的研究思路。在铝酸盐水泥和G级水泥按照1:1质量比形成的混合水泥浆的基础上,通过对储能微球研发以及对密度减轻剂、稳定剂和其他外加剂的种类和加量的优选,形成了低温早强低水化放热水泥浆体系,其早强剂为0.06%三乙醇胺,降失水剂为1%聚乙烯醇类降失水剂CML,缓凝剂为0.35%硼酸,分散剂为1.5%SYJZ-1。同时对该体系进行的性能测试表明,在4℃养护24 h水泥石抗压强度可以达到5.9 MPa,水泥浆呈现低水化放热和低温早强特性。可以看出,该低温早强低水化放热水泥浆体系在早期强度、水化放热、密度等方面性能优异。

     

  • [1] 李明川, 樊栓狮. 天然气水合物形成过程3阶段分析[J]. 可再生能源, 2010(5):27. LI Mingchuan, FAN Shuanshi.Analysis on the three stages in the formation of natural gas hydrates[J]. Renewable Energy Resources, 2010(5

    ):27.
    [2] 蒋向明. 天然气水合物的形成条件及成因分析[J]. 中国煤炭地质, 2009, 21(12):7-11.

    JIANG Xiangming.Forming conditions and genetic aanlysis of natural gas hydrate[J].Goal Geology of China, 2009, 21(12):7-11.
    [3] 王星, 孙子刚, 张自印, 等. 海域天然气水合物试采实践与技术分析[J]. 石油钻采工艺, 2017, 39(6):744-750.

    WANG Xing, SUN Zigang, ZHANG Ziyin, et al. Practical production test of natural gas hydrate in sea areas and its technological analysis[J]. Oil Drilling & Production Technology, 2017, 39(6):744-750.
    [4] 王瑞和, 齐志刚, 步玉环. 深水水合物层固井存在问题和解决方法[J]. 钻井液与完井液, 2009, 26(1):78-80.

    WANG Ruihe, QI Zhigang, BU Yuhuan. Deepwater hydrate layer cementing problems and solutions[J]. Drilling Fluid & Completion Fluid, 2009, 26(1):78-80.
    [5] 李登伟, 张烈辉, 刘大伟, 等. 天然气水合物的储层保护技术探讨[J]. 海洋油气, 2006, 26(1):43-46.

    LI Dengwei, ZHANG Liehui, LIU Dawei, et al. The discussion of reservoir protection of natural gas hydrates reservoir[J]. Offshore Oil, 2006, 26(1):43-46.
    [6] KATZ B J. Hydrocarbon shows and source rocks in scientific ocean drilling[J]. Internationa Journal of Coal Geology, 2003, 54:139-154.
    [7] 朱江林, 石礼岗, 方国伟, 等. 一种海洋深水超低温早强剂的研究[J]. 长江大学学报(自然科学版), 2011, 8(5):68-71. ZHU Jianglin, SHI Ligang, FANG Guowei, et al. Study on a marine deep-water ultra-low temperature early strength agent[J]. Journal of Yangtze University(Natural Science Edition), 2011, 8(5):68-71.
    [8] 王成文, 王瑞和, 陈二丁, 等. 锂盐早强剂改善油井水泥的低温性能及其作用机理[J]. 石油学报, 2011, 31(1):140-144.

    WANG Chengwen, WANG Ruihe, CHEN Erding, et al. Performance and mechanism of the lithium-salt accelerator in improving properties of the oil-well cement under low temperature[J]. Acta Petrolei Sinica, 2011, 31(1):140-144.
    [9] 赵琥, 邱超, 宋茂林, 等. 深水固井低温水泥外加剂的开发及应用[J]. 石油钻探技术, 2012, 40(4):72-75.

    ZHAO Hu, QIU Chao, SONG Maolin, et al. Development and application of additive in deepwater cementing[J]. Petroleum Drilling Techniques, 2012, 40(4):72-75.
    [10] 王清顺, 岳前升, 徐绍诚. 深水固井水泥浆技术研究[J]. 石油天然气学报, 2006, 28(3):109-112.

    WANG Qingshun, YUE Qiansheng, XU Shaocheng. Deep water cement slurry technique[J]. Journal of Oil and Gas Technology, 2006, 28(3):109-112.
    [11] 张清玉, 邹建龙, 朱海金, 等. 国外深水固井水泥浆技术进展[J]. 油田化学, 2007, 24(2):175-178.

    ZHANG Qingyu, ZOU Jianlong, ZHU Haijin, et al. Progress in foreign deep water cementing slurry technology[J].Oilfield Chemistry, 2007, 24(2):175-178.
    [12] 邢希金, 武治强, 耿亚楠, 等. 一种新型低放热水泥材料的室内性能研究[J]. 钻井液与完井液, 2018, 35(3):94-99.

    XING Xijin, WU Zhiqiang, GENG Ya'nan, et al. Laboratory study on a new low heat cement[J].Drilling Fluid & Completion Fluid, 2018, 35(3):94-99.
    [13] 黄锦, 姚晓, 姜祥, 等. 粒径对油井水泥水化热及力学性能的影响[J]. 钻井液与完井液, 2017, 34(2):87-92.

    HUANG Jin, YAO Xiao, JIANG Xiang, et al.Effects of particle size on hydration heat and mechanical performance of cement[J].Drilling Fluid & Completion Fluid, 2017, 34(2):87-92.
    [14] 王彪, 陈彬, 阳文学, 等. 深水表层固井水泥浆体系应用现状及发展方向[J]. 石油钻采工艺,2015,37(1):107-110.

    WANG Biao, CHEN Bin, YANG Wenxue, et al. Application status and development direction of cement slurry system in deep water surface[J]. Oil Drilling & Production Technology, 2015, 37(1):107-110.
    [15] LIU Huajie, BU Yuhuan, GUO Quanqing, et al. Converting hydration heat to achieve cement mixture with early strength and low hydrating-thermal dissipation[J]. Construction & Building Materials, 2017, 151:113-118.
    [16] MOORE S, MILLER M, FAUL R. Foam cementing applications on a deep-water subsalt well case history[R]. SPE 59170, 2000.
    [17] LANCE E B, ANTHONY V P. Cementing in deep water off-shore wells:US, 006244343B1[P]. 2001.
    [18] BAIREDDY R R, RONALD J C, BRYAN R W. Cementing casing strings in deep-water offshore wells:US, 006273191B1[P]. 2001.
    [19] STILESD D A. Successful cementing in areas prone to shallow saltwater flows in deep-water Gulf of Mexico[R]. OTC8305, 1997.
  • 加载中
计量
  • 文章访问数:  641
  • HTML全文浏览量:  153
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-17
  • 刊出日期:  2019-08-30

目录

    /

    返回文章
    返回