[1] |
马成云, 宋碧涛, 徐同台, 等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液, 2017, 34(1):1-8.MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):1-8.
|
[2] |
郑淑杰, 蒋官澄, 肖成才, 等. 纳米材料钻井液在大港油田的应用[J]. 钻井液与完井液, 2017, 34(5):14-19.ZHENG Shujie, JIANG Guancheng, XIAO Chengcai, et al. Application of a nanomaterial drilling fluid in Dagang oilfeld[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):14-19.
|
[3] |
RAFATI R, SMITH S R, HADDAD A S, et al. Effect of nanoparticles on the modifications of drilling fluids properties:A review of recent advances[J]. Journal of Petroleum Science and Engineering, 2018, 161:61-76.
|
[4] |
刘凡, 蒋官澄, 王凯, 等. 新型纳米材料在页岩气水基钻井液中的应用研究[J]. 钻井液与完井液, 2018, 35(1):27-33.LIU Fan, JIANG Guancheng, WANG Kai, et al. Research on application of a novel nanophase material in water base drilling fluids for shale drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):27-33.
|
[5] |
曲建峰, 邱正松, 郭保雨, 等. 氧化石墨烯新型抗高温降滤失剂的合成与评价[J]. 钻井液与完井液, 2017, 34(4):9-14.QU Jianfeng, QIU Zhengsong, GUO Baoyu, et al. Synthesis and evaluation of a new graphene oxide high temperature flter loss reducer[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):9-14.
|
[6] |
FAZELABDOLABADI B, KHODADADI A, SEDAGHATZADEH M. Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes[J]. Applied Nanoscience, 2015, 5(6):651-659.
|
[7] |
SADEGHALVAAD M, SABBAGHI S. The effect of the TiO 2/polyacrylamide nanocomposite on water-based drilling fluid properties[J]. Powder Technology, 2015, 272:113-119.
|
[8] |
田惠, 曹洪昌, 马樱, 等. 水基钻井液用抗高温降滤失剂的合成及性能评价[J]. 钻井液与完井液, 2015, 32(2):34-38.TIAN Hui, CAO Hongchang, MA Ying, et al. Synthesis and evaluation of high temperature filter loss reducer for water-based drilling fluid[J].Drilling Fluid & Completion Fluid, 2015, 32(2):34-38.
|
[9] |
CAI Guobin, ZHAO Guixia, WANG Xiangke, et al. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water[J]. Journal Physical Chemistry C, 2010, 114:12948-12954.
|
[10] |
KOSMULSKI M, MACZKA E, MARCZEWSKA B K, et al. Electrokinetic potentials of mineral oxides and calcium carbonate in artificial seawater[J]. Marine Pollution Bulletin, 2003, 46(1):120-122.
|
[11] |
杨丽丽, 杨潇, 蒋官澄, 等. 含离子液体链段抗高温高钙降滤失剂[J]. 钻井液与完井液,2018,35(6):8-14.YANG Lili, YANG Xiao, JIANG Guancheng, et al. A high temperature calcium resistant filter loss reducer containing ionic liquid segments[J].Drilling Fluid & Completion Fluid, 2018, 35(6):8-14.
|
[12] |
HUO Jinhua, PENG Zhigang, YE Zhongbin, et al. Investigation of synthesized polymer on the rheological and filtration performance of water-based drilling fluid system[J]. Journal of Petroleum Science and Engineering, 2018, 165:655-663.
|
[13] |
JUNG Y, SON Y H, LEE J K, et al. Rheological behavior of clay nanoparticle hybrid-added bentonite suspensions:specific role of hybrid additives on the gelation of clay-based fluids[J]. ACS Applied Materials and Interfaces, 2011, 3(9):3515-3522.
|
[14] |
AFTAB A, ISMAIL A R, KHOKHAR S, et al. Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of waterbased drilling fluids at elevated temperature conditions[J]. Journal of Petroleum Science and Engineering, 2016, 146:1142-1157.
|
[15] |
RUDYAK V, BELKIN A A, TOMILINA E A, et al. Nanoparticle friction force and effective viscosity of nanosuspensions[C]//Defect and Diffusion Forum, 2008.
|
[16] |
SAMI N A. Effect of magnesium salt contamination on the behavior of drilling fluids[J]. Egyptian Journal of Petroleum, 2016, 25(4):453-458.
|
[17] |
SU J, CHU Q, REN M. Properties of high temperature resistance and salt tolerance drilling fluids incorporating acrylamide-2-acrylamido-2-methyl-1-propane sulfonic acid/N-vinylpyrrolidone/dimethyl diallyl ammonium chloride quadripolymer as fluid loss additives[J]. Journal of Polymer Engineering, 2014, 34(2):153-159.
|
[18] |
MAHTO V, SRIKANTH P, VAMSI K B. Development of non-damaging and inhibitive water based oil well drilling fluids[J]. Petroleum Science and Technology, 2013, 31(7):721-726.
|
[19] |
HASSIBAL K J, AMANI M. The effect of salinity on the rheological properties of water based mud under high pressures and high temperatures for drilling offshore and deep wells[J]. Earth Science Research, 2013, 2(1).
|
[20] |
AHMAD H M, KMAML M S,, AL-HARTHI M A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids[J]. Journal of Molecular Liquids, 2018, 252:133-143.
|