An Ultra-high Density Diesel Oil Base Drilling Fluid for Use at 160℃
-
摘要: 由于油气勘探开发逐步向深层、非常规等油气藏发展,要求采用抗高温超高密度油基钻井液钻进,该钻井液必须具有良好流变性、低的高温高压滤失量、良好的封堵性与动/静沉降稳定性。研讨了抗160℃超高密度柴油基钻井液配方。通过大量实验得出,采用重晶石加重,无法配制出具有良好流变性能与动沉降稳定性能的超高密度柴油基钻井液;形成了抗160℃密度为2.4~3.0 g/cm3超高密度柴油基钻井液配方为,0#柴油与25%氯化钙盐水的质量比为90∶10,加入有机土+0.8%主乳化剂+1%辅乳化剂+1%润湿剂+5%降滤失剂+3% CaO+加重剂(重晶石∶MicroMax为6∶4),其中有机土加量随钻井液密度增加而下降,密度为2.4、2.6、2.8和3.0 g/cm3的柴油基钻井液,最佳有机土加量分别为1%、0.5%、0.3%、0。Abstract: Increasing demands of oil worldwide is driving oil and gas exploration and development to deeper and unconventional petroleum reservoirs, and high temperature ultra-high density oil base drilling fluids are required to drill the wells. The high temperature ultra-high density oil base drilling fluids should have good rheology, low HTHP filtration rate, good plugging performance and good dynamic/static settling stability. An ultra-high density oil base drilling fluid used at 160℃ has been developed in laboratory. large amount of experiments show that, using barite, an ultra-high density diesel oil base mud with good rheology and good dynamic settling stability cannot be obtained. The composition of the ultra-high density diesel oil base drilling fluid, with its density changing from 2.4 g/cm3 to 3.0 g/cm3, is as follows:0# diesel oil and 25% CaCl2 water solution in a ratio of 90:10 as the base fluid, organophilic clay, 0.8% primary emulsifier, 1% secondary emulsifier, 1% wetting agent, 5% filter loss reducer, 3% CaO and weighting agent (Barite:Micromax=6:4). The concentration of the organophilic clay decreases with density; density of 2.4 g/cm3, 2.6 g/cm3, 2.8 g/cm3 and 3.0 g/cm3 corresponds to the optimum organophilic clay concentration of 1%, 0.5%, 0.3% and 0%, respectively.
-
[1] 张晖,蒋绍宾,袁学芳,等. 微锰加重剂在钻井液中的应用[J]. 钻井液与完井液,2018,35(1):1-7.ZHANG Hui,JIANG Shaobin,YUAN Xuefang,et al. Application of micro powder manganese weighting agent in drill-in fluids[J].Drilling Fluid & Completion Fluid, 2018,35(1):1-7. [2] 刘永福. 高密度钻井液的技术难点及其应用[J]. 探矿工程- 岩土钻掘工程,2007,34(5):47-49.LIU Yongfu. Technological difficulties and application of high density drilling fluid[J].Exploration Engineering (Rock & Soil Drilling and Tunneling),2007,34(5):47-49. [3] 王琳,林永学,杨小华,等. 不同加重剂对超高密度钻井液性能的影响[J]. 石油钻探技术,2012,40(3):48-53.WANG Lin,LIN Yongxue,YANG Xiaohua, et al. Effects of weighting agent on ultra-high density drilling fluid's performance[J]. Petroleum Drilling Techniques, 2012,40(3):48-53. [4] 黄维安,邱正松,钟汉毅. 高密度钻井液加重剂的研究[J]. 国外油田工程,2010,26(8):37-40.WANG Weian,QIU Zhengsong,ZHONG Hanyi,et al. Study of weighting admixture for high density drilling fluid[J]. Foreign Oil Field Engineering,2010,26(8):37-40. [5] 侯瑞雪,张景富,徐同台,等.处理剂对抗高温高密度油基钻井液沉降稳定性的影响[J]. 钻井液与完井液, 2014,31(5):46-48.HOU Ruixue, ZHANG Jingfu, XU Tongtai, et al.Effect of additives on settling stability of high temperature high density oil base drilling fluid[J].Drilling Fluid & Completion Fluid,2014,31(5):46-48. [6] 郭营. 浓悬浮体表观流变特性与局部流动机理研究[D]. 上海交通大学,2011. GUO Ying. Study on the global rheology and local flow mechanism of concentrated suspensions[D]. Shanghai Jiao Tong University, 2011. [7] ZENG W, BOUGUETTA M. A Comparative assessment of barite SAG evaluation methods[C]//SPE Deepwater Drilling and Completions Conference. Society of Petroleum Engineers, 2016. -

计量
- 文章访问数: 810
- HTML全文浏览量: 205
- PDF下载量: 301
- 被引次数: 0