留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pickering乳液在油基钻井液中的应用

孙强 樊哲 赵春花 耿铁 孙德军

孙强, 樊哲, 赵春花, 耿铁, 孙德军. Pickering乳液在油基钻井液中的应用[J]. 钻井液与完井液, 2019, 36(2): 133-140. doi: 10.3969/j.issn.1001-5620.2019.02.001
引用本文: 孙强, 樊哲, 赵春花, 耿铁, 孙德军. Pickering乳液在油基钻井液中的应用[J]. 钻井液与完井液, 2019, 36(2): 133-140. doi: 10.3969/j.issn.1001-5620.2019.02.001
SUN Qiang, FAN Zhe, ZHAO Chunhua, GENG Tie, SUN Dejun. Application of Pickering Emulsion in Oil Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 133-140. doi: 10.3969/j.issn.1001-5620.2019.02.001
Citation: SUN Qiang, FAN Zhe, ZHAO Chunhua, GENG Tie, SUN Dejun. Application of Pickering Emulsion in Oil Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 133-140. doi: 10.3969/j.issn.1001-5620.2019.02.001

Pickering乳液在油基钻井液中的应用

doi: 10.3969/j.issn.1001-5620.2019.02.001
基金项目: 

国家自然科学基金联合基金项目-培育项目-空间科学卫星科学研究联合基金(U1738118)

详细信息
    作者简介:

    孙强,工程师,1979年生,主要从事油气井化学工程领域研究。电话(010)84522142;E-mail:sunqiang7@cosl.com.cn

  • 中图分类号: TE254

Application of Pickering Emulsion in Oil Base Drilling Fluids

  • 摘要: Pickering乳液以其较高的聚并稳定性、多样性、可调控性、低成本、低毒性和生物兼容性等优势,广泛应用于生物医学、食品和化妆品等领域。近年来,Pickering乳液在石油行业的应用备受关注。分析了Pickering乳液的稳定机理与其相较于传统乳液的优势;探究了影响Pickering乳液稳定性的诸多因素及调控方式;最后综述了近年来国内外Pickering乳液在钻井和驱油方面的应用,并对Pickering乳液在石油行业中的发展前景进行了展望。

     

  • [1] CHEVALIER Y, BOLZINGER M A. Emulsions stabilized with solid nanoparticles:Pickering emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 439:23-34.
    [2] WANG Z, WANG Y. Tuning amphiphilicity of particles for controllable Pickering emulsion[J]. Materials, 2016, 9(11):903.
    [3] NASSER J, JESIL A, MOHIUDDIN T, et al. Experimental investigation of drilling fluid performance as nanoparticles[J]. World Journal of Nano Science and Engineering, 2013, 3(3):57.
    [4] LEVINE S, BOWEN B D, PARTRIDGE S J. Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface[J]. Colloids and Surfaces,1989, 38(2):325-343.
    [5] BINKS B P, LUMSDON S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23):8622-8631.
    [6] VIGNATI E, PIAZZA R, LOCKHART T P. Pickering emulsions:interfacial tension, colloidal layer morphology, and trapped-particle motion[J]. Langmuir, 2003, 19(17):6650-6656.
    [7] DONG L, JOHNSON D. Surface tension of chargestabilized colloidal suspensions at the water-air interface[J]. Langmuir, 2003, 19(24):10205-10209.
    [8] YAN N, GRAY M R, MASLIYAH J H. On water-inoil emulsions stabilized by fine solids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 193(1-3):97-107.
    [9] TCHOLAKOVA S, DENKOV N D, LIPS A. Comparison of solid particles, globular proteins and surfactants as emulsifiers[J]. Physical Chemistry Chemical Physics, 2008, 10(12):1608-1627.
    [10] DU K, GLOGOWSKI E, EMRICK T, et al. Adsorption energy of nano-and microparticles at liquid-liquid interfaces[J]. Langmuir, 2010, 26(15):12518-12522.
    [11] YAN N, MAHAM Y, MASLIYAH J H, et al. Measurement of contact angles for fumed silica nanospheres using enthalpy of immersion data[J]. Journal of Colloid and Interface Science, 2000, 228(1):1-6.
    [12] TAMBE D E, SHARMA M M. Factors controlling the stability of colloid-stabilized emulsions:I. An experimental investigation[J]. Journal of Colloid and Interface Science, 1993, 157(1):244-253.
    [13] KAPTAY G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 282:387-401.
    [14] DENKOV N D, IVANOV I B, KRALCHEVSKY P A, et al. A possible mechanism of stabilization of emulsions by solid particles[J]. Journal of Colloid and Interface Science, 1992, 150(2):589-593.
    [15] MARINA P F, XU J, WU X, et al. Thinking outside the box:placing hydrophilic particles in an oil phase for the formation and stabilization of pickering emulsions[J]. Chemical science, 2018, 9(21):4821-4829.
    [16] KUNDU P, AGRAWAL A, MATEEN H, et al. Stability of oil-in-water macro-emulsion with anionic surfactant:Effect of electrolytes and temperature[J]. Chemical Engineering Science, 2013, 102:176-185.
    [17] SALARIJ W O, LEERMAKERSF A M, KLUMPERMAN B. Pickering emulsions:wetting and colloidal stability of hairy particles-A self-consistent field theory[J]. Langmuir, 2011, 27(11):6574-6583.
    [18] HOROZOV T S, BINKS B P, GOTTSCHALKGAUDIG T. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles[J]. Physical Chemistry Chemical Physics, 2007, 9(48):6398-6404.
    [19] ASHBY N P, BINKS B P. Pickering emulsions stabilised by laponite clay particles[J]. Physical Chemistry Chemical Physics, 2000, 2(24):5640-5646.
    [20] 鄢捷年, 李健鹰, 张琰.钻井液工艺学[M]. 石油大学出版社, 2001. Yan Jienian,LI Jianying,ZHANG Yan.Drilling fluids technology[M]. Petroleum University Press, 2001.
    [21] ZHANG T, DAVIDSON D, BRYANT S L, et al. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery[C]//SPE improved oil recovery symposium. Society of Petroleum Engineers, 2010.
    [22] POLITOVA N I, TCHOLAKOVA S, TSIBRANSKA S, et al. Coalescence stability of water-in-oil drops:Effects of drop size and surfactant concentration[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 531:32-39.
    [23] BINKS B P, OLUSANYA S O. Pickering emulsions stabilized by coloured organic pigment particles[J]. Chemical science, 2017, 8(1):708-723.
    [24] FRELICHOWSKA J, BOLZINGER M A, CHEVALIER Y. Effects of solid particle content on properties of o/w Pickering emulsions[J]. Journal of Colloid and Interface Science, 2010, 351(2):348-356.
    [25] AVEYARD R, BINKS B P, CLINT J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100:503-546.
    [26] PAJOUHANDEH A, KAVOUSI A, SCHAFFIE M, et al. Experimental measurement and modeling of nanoparticle-stabilized emulsion rheological behavior[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 520:597-611.
    [27] GHOSN R, MIHELIC F, HOCHEPIED J F, et al. Silica nanoparticles for the stabilization of W/O emulsions at HTHP conditions for unconventional reserves drilling operations[J]. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 2017, 72(4):21.
    [28] WU D, BINKS B P, HONCIUC A. Modeling the interfacial energy of surfactant-free amphiphilic janus nanoparticles from phase inversion in pickering emulsions[J]. Langmuir, 2017, 34(3):1225-1233.
    [29] ANDRESEN M, STENIUS P. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose[J]. Journal of Dispersion Science and Technology, 2007, 28(6):837-844.
    [30] BINKS B P, LUMSDON S O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir, 2000, 16(6):2539-2547.
    [31] SANTINI E, GUZMÁN E, FERRARI M, et al. Emulsions stabilized by the interaction of silica nanoparticles and palmitic acid at the water-hexane interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 460:333-341.
    [32] 闫晶. 油包水钻井液稳定性影响因素研究[J]. 中国科技信息, 2010, 23:51-52. YAN Jing. Influence factors of stability of invert emulsion drilling fluid[J]. China Science and Technology Information, 2010

    , 23:51-52.
    [33] RAGHAVAN S R, WALLS H J, KHAN S A. Rheology of silica dispersions in organic liquids:new evidence for solvation forces dictated by hydrogen bonding[J]. Langmuir, 2000, 16(21):7920-7930.
    [34] WHITBY C P, KREBSZ M, BOOTY S J. Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents[J]. Journal of Colloid and Interface Science, 2018, 527:1-9.
    [35] MARUNAKA R, KAWAGUCHI M. Rheological behavior of hydrophobic fumed silica suspensions in different alkanes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 456:75-82.
    [36] MARUNAKA R, KAWAGUCHI M. Rheological behavior of hydrophobic fumed silica suspensions in aromatic dispersion media[J]. Journal of Dispersion Science and Technology, 2017, 38(2):223-228.
    [37] RAGHAVAN S R, HOU J, BAKER G L, et al. Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media:direct correlation between dynamic rheology and interaction parameters[J]. Langmuir, 2000, 16(3):1066-1077.
    [38] GOLEMANOV K, TCHOLAKOVA S, KRALCHEVSKY P A, et al. Latex-particle-stabilized emulsions of anti-bancroft type[J]. Langmuir, 2006, 22(11):4968-4977.
    [39] BINKS B P, CLINT J H, WHITBY C P. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles[J]. Langmuir, 2005, 21(12):5307-5316.
    [40] THICKETT S C, ZETTERLUND P B. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers:Influence of oil phase polarity[J]. Journal of Colloid and Interface Science, 2015, 442:67-74.
    [41] ZHANG N, ZHANG L, SUN D. Inf luenc e of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles[J]. Langmuir, 2015, 31(16):4619-4626.
    [42] SOLIMAN A A. Oil base mud in high pressure, high temperature wells[C]//Middle East Oil Show. Society of Petroleum Engineers, 1995.
    [43] 罗陶涛, 段敏, 杨刚. 基于Pickering乳状液的油基钻井液乳化稳定性能研究[J]. 钻采工艺, 2015, 38(1):99-101.

    LUO Taotao, DUAN Min, YANG Gang,et al. Emulsification stability of oil-based drilling fluid based on Pickering emulsion[J].Drilling & Production Technology, 2015, 38(1):99-101.
    [44] 艾加伟, 庞敏, 陈馥, 等. DSW-S纳米颗粒对油基钻井液的稳定作用[J]. 油田化学, 2016, 33(1):5-8.

    AI Jiawei, PANG Min, CHEN Fu,et al. Effect of DSW-S nanoparticle on the stability of oil-based drilling fluid[J]. Oilfield Chemistry, 2016, 33(1):5-8.
    [45] AGARWAL S, TRAN P, SOONG Y, et al. Flow behavior of nanoparticle stabilized drilling fluids and effect of high temperature aging[C]//AADE National Technical Conference and Exhibition, Houston. 2011:12-14.
    [46] WAGLE V, AL-YAMI A S, ALABDULLATIF Z. Using nanoparticles to formulate sag-resistant invert emulsion drilling fluids[C]//SPE/IADC Drilling Conference and Exhibition. Society of Petroleum Engineers, 2015.
    [47] ANOOP K, SADR R, AL-JUBOURI M, et al. Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures[J]. International Journal of Thermal Sciences, 2014, 77:108-115.
    [48] BELSEY K E, TOPPING C, FARRAND L D, et al. Inhibiting the thermal gelation of copolymer stabilized nonaqueous dispersions and the synthesis of full color PMMA particles[J]. Langmuir, 2016, 32(11):2556-2566.
    [49] WRIGHT R A E, WANG K, QU J, et al. Oil-soluble polymer brush grafted nanoparticles as effective lubricant additives for friction and wear reduction[J]. Angewandte Chemie International Edition, 2016, 55(30):8656-8660.
    [50] WON Y Y, MEEKER S P, TRAPPE V, et al. Effect of temperature on carbon-black agglomeration in hydrocarbon liquid with adsorbed dispersant[J]. Langmuir, 2005, 21(3):924-932.
    [51] ROKE S, BERG O, BUITENHUIS J, et al. Surface molecular view of colloidal gelation[J]. Proceedings of the National Academy of Sciences,2006, 103(36):13310-13314.
    [52] EBERLE A P R, WAGNER N J, AKGUN B, et al. Temperature-dependent nanostructure of an end-tethered octadecane brush in tetradecane and nanoparticle phase behavior[J]. Langmuir, 2010, 26(5):3003-3007.
    [53] WIDMER-COOPER A, GEISSLER P L. Ligandmediated interactions between nanoscale surfaces depend sensitively and nonlinearly on temperature, facet dimensions, and ligand coverage[J]. ACS Nano, 2016, 10(2):1877-1887.
    [54] TADMOR R, ROSENSWEIG R E, FREY J, et al. Resolving the puzzle of ferrofluid dispersants[J]. Langmuir, 2000, 16(24):9117-9120.
    [55] SEYMOUR B T, WRIGHT R A E, PARROTT A C, et al. Poly (alkyl methacrylate) brush-grafted silica nanoparticles as oil lubricant additives:effects of alkyl pendant groups on oil dispersibility, stability, and lubrication property[J]. ACS Applied Materials & Interfaces, 2017, 9(29):25038-25048.
    [56] 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, 8(2):98-103.

    YU Liandong. The distribution of heavy oil resources in the world and the present situation and prospect of its exploitation technology[J]. Special Oil and Gas Reservoirs, 2001, 8(2):98-103.
    [57] 裴海华, 张贵才, 葛际江, 等. 化学驱提高普通稠油采收率的研究进展[J]. 油田化学, 2010, 27(3):350-355.

    PEI Haihua, ZHANG Guicai, GE Jijiang,et al. Advance in enhanced ordianry heavy oil recovery by chemical flooding[J]. Oilfield Chemistry, 2010(27):350-356.
    [58] JOHNSON JR C E. Status of caustic and emulsion methods[J]. Journal of Petroleum Technology, 1976, 28(01):85-92.
    [59] 葛际江, 张强, 王娜. 纳米SiO2 和表面活性剂协同稳定的水包油乳状液驱油性能研究[J]. 科学技术与工程2015(15):165-170,180.

    GE Jijiang,ZHANG Qiang,WANG Na,et al. The displacement performance study of O/W emulsion stabilized by nanoparticle SiO2 and surfactant[J]. Science Technology and Engineering, 2015(15):165-170,180.
    [60] SHARMA T, KUMAR G S, CHON B H, et al. Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer[J]. Journal of Industrial and Engineering Chemistry,2015, 22:324-334.
    [61] SHARMA T, KUMAR G S, SANGWAI J S. Comparative effectiveness of production performance of pickering emulsion stabilized by nanoparticle-surfactant-polymerover surfactant-polymer (SP) flooding for enhanced oil recoveryfor Brownfield reservoir[J]. Journal of Petroleum Science and Engineering, 2015, 129:221-232.
  • 加载中
计量
  • 文章访问数:  591
  • HTML全文浏览量:  163
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回