留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成锂皂石用作超高温水基钻井液增黏剂实验研究

熊正强 李晓东 付帆 李艳宁

熊正强, 李晓东, 付帆, 李艳宁. 合成锂皂石用作超高温水基钻井液增黏剂实验研究[J]. 钻井液与完井液, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004
引用本文: 熊正强, 李晓东, 付帆, 李艳宁. 合成锂皂石用作超高温水基钻井液增黏剂实验研究[J]. 钻井液与完井液, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004
XIONG Zhengqiang, LI Xiaodong, FU Fan, LI Yanning. Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004
Citation: XIONG Zhengqiang, LI Xiaodong, FU Fan, LI Yanning. Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004

合成锂皂石用作超高温水基钻井液增黏剂实验研究

doi: 10.3969/j.issn.1001-5620.2018.05.004
基金项目: 

国家青年科学基金项目“合成锂皂石在超高温水基钻井液中的增黏机理研究”(41502345);国土资源部深部地质钻探技术重点实验室开放基金资助(KF201810)。

详细信息
    作者简介:

    熊正强,工程师,硕士,1985年生,毕业于中国地质大学(北京)应用化学专业,现在从事钻井液技术研究。电话(010)69301761;E-mail:xiongzq1012@126.com。

  • 中图分类号: TE254.3

Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds

  • 摘要: 针对现有聚合物增黏剂抗温能力不足的问题,无法满足超高温(耐240℃)水基钻井液使用要求,提出采用合成锂皂石作为水基钻井液超高温增黏剂。采用X射线粉晶衍射及热重分析对合成锂皂石进行了结构表征,对其増黏性能、抗温性及抗盐性能等进行了评价,并分析了合成锂皂石抗高温增黏机理。实验结果发现:合成锂皂石H-6具有优良的増黏性能和热稳定性,抗温能力可达240℃,而且抗高温増黏效果优于现有国内外高温增黏剂产品。在4%钠膨润土基浆中加入1% H-6,240℃高温老化16 h前后浆液的表观黏度均为16.5 mPa·s,而加有1%高温增黏剂HE300的钠土基浆经240℃老化16 h后其表观黏度降低率大于92%。研究结果表明,合成锂皂石与其它处理剂配伍性好,适合用作超高温增黏剂,在超高温水基钻井液中具有广阔的应用前景。

     

  • [1] GUVEN N, PANFIL D J, CARNEY L L. Comparative rheology of water-based drilling fluids with various clays[C]. SPE 17571, 1988.
    [2] KELESSIDIS V C, CHRISTIDIS G, MAKRI P, et al. Gelation of water-bentonite suspensions at high temperatures and rheological control with lignite addition[J]. Applied Clay Science, 2007, 36(4):221-231.
    [3] 施里宇, 李天太, 张喜凤, 等. 温度和膨润土含量对水基钻井液流变性的影响[J]. 石油钻探技术, 2008, 36(1):20-22.

    SHI Liyu, LI Tiantai, ZHANG Xifeng, et al. Effects of temperature and clay content on water-based drilling fluids rheological property[J]. Petroleum Drilling Techniques, 2008, 36(1):20-22.
    [4] 张斌. 超深井超高温钻井液技术研究[D]. 北京:中国地质大学(北京), 2010. ZHANG Bin. The research on drilling fluid technology under ultra-deep well and ultra-temperature[D]. Beijing:China University of Geosciences, 2010.
    [5] 单文军, 陶士先, 付帆, 等. 抗240℃ 高温水基钻井液体系的室内研究[J]. 钻井液与完井液, 2014, 31(5):10-13.

    SHAN Wenjun, TAO Shixian, FU Fan, et al. High temperature drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):10-13.
    [6] 许洁, 乌效鸣, 朱永宜, 等. 抗240℃超高温水基钻井液室内研究[J]. 钻井液与完井液, 2015, 32(1):10-13.

    XU Jie, WU Xiaoming, ZHU Yongyi, et al. Laboratory study on ultra high temperature water base mud[J].Drilling Fluid & Completion Fluid, 2015, 32(1):10-13.
    [7] 张丽君, 王旭, 胡小燕, 等. 抗260℃超高温水基钻井液体系[J]. 钻井液与完井液, 2015, 32(4):5-8.

    ZHANG Lijun, WANG Xu, HU Xiaoyan, et al. Ultrahigh temperature water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):5-8.
    [8] 郑文龙, 乌效鸣, 朱永宜, 等. 松科2井特殊钻进工艺下钻井液技术[J]. 石油钻采工艺, 2015, 37(3):32-35.

    ZHENG Wenlong, WU Xiaoming, ZHU Yongyi, et al. Drilling fluid technique for special drilling technology in SK-2 Well[J].Oil Drilling & Production Technology, 2015, 37(3):32-35.
    [9] 黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺, 2016, 38(6):737-745.

    HUANG Yi. Drilling technology for HTHP exploration in South China Sea and its prospect[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745.
    [10] THAEMLITZ C J. Synthetic filtration control polymers for wellbore fluids:USA, 7098171[P]. 2006-8-29.
    [11] YAN L, WANG C B, XU B, et al. Preparation of a novel amphiphilic comb-like terpolymer as viscosifying additive in low-solid drilling fluid[J]. Materials Letters, 2013(105):232-235.
    [12] 闫丽丽, 孙金声, 王建华, 等. 新型抗高温抗盐钻井液增黏剂PADA的制备与性能[J]. 石油学报(石油加工), 2013, 29(3):464-469. YAN Lili, SUN Jinsheng, WANG Jianhua, et al. Preparation and properties of heat- and salt-tolerant viscosity improver PADA in water -based drilling fluid[J]. Acta Petroleum Sinica(Petroleum Processing Section), 2013, 29(3):464-469.
    [13] 谢彬强, 邱正松. 无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J]. 油田化学, 2014, 31(4):481-487.

    XIE Bingqiang, QIU Zhengsong. Structure, property and application of ultra-high temperature viscosifier SDKP for solid-free drilling fluid[J]. Oilfield Chemistry, 2014, 31(4):481-487.
    [14] 薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6):67-73.

    XUE Wenjia. Synthesis and properties of high temperature resistance and environmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73.
    [15] 吴爽. 辽河油田无固相强抑制水基钻井液技术[J]. 石油钻探技术, 2017, 45(6):42-48.

    WU Shuang. Solid-free and strongly inhibitive waterbased drilling fluid in the Liaohe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6):42-48.
    [16] 邱正松, 毛惠, 谢彬强, 等. 抗高温钻井液增黏剂的研制及应用[J]. 石油学报, 2015, 36(1):106-113.

    QIU Zhengsong, MAO Hui, XIE Binqiang, et al. Synthesis and field application of high temperature resistant viscosifying agent for drilling fluid[J]. Acta Petroleum Sinica, 2015, 36(1):106-113.
    [17] 薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6):67-73.

    XUE Wenjia. Synthesis and properties of high temperature resistance and environmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73.
    [18] 刘建军, 刘晓栋, 马学勤, 等. 抗高温耐盐增黏剂及其无固相钻井液体系研究[J]. 钻井液与完井液, 2016, 33(2):5-11.

    LIU Jianjun, LIU Xiaodong, MA Xueqin, et al. Study on high temperature salt-resistant viscosifier and the formulated solids-free drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):5-11.
    [19] TEHRANI A, GERRARD D, YOUNG S, et al. Environmentally friendly water based fluid for HT/HP drilling[C]. SPE 121783, 2009.
    [20] 覃勇, 马克迪, 蒋官澄. 水基钻井液用锂皂石增黏剂的合成及性能研究[J]. 钻井液与完井液, 2016, 33(3):20-24.

    QIN Yong, MA Kedi, JIANG Guancheng. Synthesis and study on hectorite viscosifier used in water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):20-24.
    [21] MUELLER H, HEROLD C P, DOLHAINE H, et al. Water-based drilling and well-servicing fluids with swellable, synthetic layer silicates:USA, 4888120[P]. 1989-12-19.
    [22] AU P I, HASSAN S, LIU J, et al. Behaviour of LAPONITE® gels:Rheology, ageing, pH effect and phase state in the presence of dispersant[J]. Chemical Engineering Research and Design, 2015, 101:65-73.
    [23] PEK-ING A, YEE-KWONG L. Surface chemistry and rheology of Laponite dispersions-Zeta potential, yield stress, ageing, fractal dimension and pyrophosphate[J]. Applied Clay Science, 2015, 107:36-45.
  • 加载中
计量
  • 文章访问数:  886
  • HTML全文浏览量:  253
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-23
  • 刊出日期:  2018-09-30

目录

    /

    返回文章
    返回