留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系“三气”共采条件下的井壁稳定钻井液技术

陈书雅 宋继伟 石彦平 彭扬东 蔡记华

陈书雅, 宋继伟, 石彦平, 彭扬东, 蔡记华. 煤系“三气”共采条件下的井壁稳定钻井液技术[J]. 钻井液与完井液, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007
引用本文: 陈书雅, 宋继伟, 石彦平, 彭扬东, 蔡记华. 煤系“三气”共采条件下的井壁稳定钻井液技术[J]. 钻井液与完井液, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007
CHEN Shuya, SONG Jiwei, SHI Yanping, PENG Yangdong, CAI Jihua. Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007
Citation: CHEN Shuya, SONG Jiwei, SHI Yanping, PENG Yangdong, CAI Jihua. Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007

煤系“三气”共采条件下的井壁稳定钻井液技术

doi: 10.3969/j.issn.1001-5620.2018.04.007
基金项目: 

国家自然科学基金项目“小秦岭金矿田2000米深孔钻探技术”(41072111);湖北省自然科学基金重点项目“水基钻井液增强页岩气水平井井壁稳定性的理论与方法”(2015CFA135);湖北省技术创新专项“基岩水井增产环保型酸化技术引进与开发”(2017AHB0052)。

详细信息
    作者简介:

    陈书雅,1995年生,在读硕士研究生,从事钻井液技术研究工作。电话13018012077;E-mail:chenshuya@cug.edu.cn。

    通讯作者:

    蔡记华,工学博士,教授,E-mail:caijh@cug.edu.cn

  • 中图分类号: TE254.3

Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures

  • 摘要: 煤系“三气”共采要求钻井液能同时解决煤层、致密砂岩和页岩地层的井壁稳定难题。在分析煤岩和页岩矿物组成的基础上,研究了正电性处理剂对煤岩表面Zeta电位的影响规律,优选出了能有效增加与页岩(煤岩)的接触角、降低钻井液表面张力的表面活性剂复配配方,并从流变性、滤失性、电性、润湿性、抑制性、储层保护和抗污染性能等方面对水基钻井液体系进行了综合评价。结果表明:有机正电胶和阳离子型表面活性剂均能降低毕节龙潭组煤岩的负电性;季铵盐类表面活性剂和有机硅表面活性剂均能将秀山龙马溪组页岩和毕节龙潭组煤岩由表面水润湿转变为油润湿;表面活性剂优化组合和无机正电胶(MMH-1)溶液能够有效阻缓页岩和煤岩的孔隙压力传递。所提出的MMH-1钻井液体系黏度适中,API滤失量仅为7 mL,对煤岩和页岩水化的抑制性强;储层伤害程度低,对煤储层的渗透率伤害率仅为10%,能将基浆煤岩气测渗透率降低率降低3.6%;抗污染能力强,能抗3% NaCl、1% CaCl2和5%凹凸棒土(模拟钻屑);生物毒性低,对环境友好,满足煤系“三气”共采条件下的井壁稳定要求。

     

  • [1] 秦勇, 申建, 沈玉林. 叠置含气系统共采兼容性——煤系"三气"及深部煤层气开采中的共性地质问题[J]. 煤炭学报, 2016,41(1):14-23.

    QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14-23.
    [2] 梁冰, 石迎爽,孙维吉,等. 中国煤系"三气"成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167-173.

    LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of "the three gases" in coal measure and the possibility of commingling in China[J].Journal of China Coal Society,2016,41(1):167-173.
    [3] 胡进奎, 杜文凤. 浅析煤系地层"三气合采"可行性[J]. 地质论评, 2017,63(S1):83-84.

    HU Jinkui,DU Wenfeng. Analysis on feasibility of three gas co-exploration in coal measure strata[J]. Geological Review,2017,63(S1):83-84.
    [4] 张茜,孙卫,任大忠,等. 化学驱表面活性剂对特低渗透砂岩储层表面荷电性能的影响:以鄂尔多斯盆地陇东地区上三叠统延长组长8储层为例[J]. 地质科技情报,2016,35(6):235-242.

    ZHANG Qian, SUN Wei, REN Dazhong,et al. Effects of surfactant on the electrical property of Ultralow permeability sandstone reservoir:the upper triassic chant 8 formation in Longdong area of ordos basin as an example[J]. Geological Science and Technology Information, 2016,35(6):235-242.
    [5] ADIBHATL A B, MOHANTY K. Oil recovery from fractured carbonates by surfactant-aided gravity drainage:laboratory experiments and mechanistic simulations[J]. SPE Reservoir Evaluation & Engineering, 2008,11(1):119-130.
    [6] HIRASAKI G, ZHANG D L. Surface chemistry of oil recovery from fractured, oil-wet, carbonate formation[J]. SPE Journal, 2004, 9(2):151-162.
    [7] 王富华, 艾军, 王辉,等. 无机正电胶双聚钻井完井液技术研究[J]. 石油钻探技术, 2005,33(1):24-27.

    WANG Fuhua, AI Jun, WANG Hui, et al. Study on inorganic positive gel/polyol/polymer drilling and completion fluid[J]. Petroleum Drilling Techniques, 2005,33(1):24-27.
    [8] 梁利喜, 熊健, 刘向君. 水化作用和润湿性对页岩地层裂纹扩展的影响[J]. 石油实验地质,2014,36(6):780-786.

    LIANG Lixi, XIONG Jian, LIU Xiangjun. Effects of hydration swelling and wettability on propagation mechanism of shale formation crack[J]. Petroleum Geology & Experiment,2014,36(6):780-786.
    [9] Alvarez J O, Schechter D. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016,43(5):1-8. ALVAREZ J O, SCHECHTER D.Application of wettability alteration in the exploitation of unconventional liquid resources[J].Petroleum Exploration and Development,2016,43(5):1-8.
    [10] 蔡记华, 岳也, 曹伟建, 等. 钻井液润湿性影响页岩井壁稳定性的实验研究[J]. 煤炭学报,2016,41(1):228-233.

    CAI Jihua, YUE Ye, CAO Weijian, et al. Experimental study on the effect of drilling fluid wettability on shale wellbore stability[J].Journal of China Coal Society, 2016,41(1):228-233.
    [11] 高春宁, 邱平, 武平仓, 等. 表面活性剂对油藏砂岩表面性质的影响[J]. 武汉大学学报(理学版),2011,57(1):43-46. GAO Chunning,QIU Ping,WU Pingcang, et al. Effect of surfactant on surface properties of reservoir sandstone[J]. Journal of Wuhan University (Natural Science Edition),2011,57(1):43-46.
    [12] 李相臣,康毅力,尹中山. 不同化学环境下煤岩表面电性与润湿性特征[J]. 中国矿业大学学报, 2014,43(5):864-869.

    LI Xiangchen,KANG Yili,YIN Zhongshan. Surface electricity and wettability of coal rock under the condition of different chemical environments[J]. Journal of China University of Mining & Technology,2014,43(5):864-869.
    [13] 王宝俊, 李敏, 赵清艳, 等. 煤的表面电位与表面官能团间的关系[J]. 化工学报, 2004,55(8):1329-1334.

    WANG Baojun, LI Min, ZHAO Qingyan, et al. Relationship between surface potential and functional groups of coals[J]. Journal of Chemical Industry and Engineering, 2004,55(8):1329-1334.
    [14] 宋永玮, 李新生, 吴家珊. 粉煤表面的动电位[J]. 燃料化学学报, 1988,16(3):245-252.

    SONG Yongwei, LI Xinsheng,WU Jiashan. Zeta potential of the surface of fine coal[J]. Journal of Fuel Chemistry and Technology,1988,16(3):245-252.
    [15] 张春光, 侯万国, 孙德军. 电性抑制性井壁稳定与油层保护[J]. 钻井液与完井液,2002,19(6):5-8.

    ZHANG Chunguang,HOU Wanguo,SUN Dejun. Electrical behavior, inhibition, wall stability and reservoir protection[J]. Drilling Fluid & Completion Fluid,2002, 19(6):5-8.
    [16] 刘开平,宫华,周敬恩.海泡石表面电性研究[J]. 矿产综合利用,2004(5):15-21. LIU Kaiping,GONG Hua,ZHOU Jing'en. Research on surface electrical property of sepiolite[J]. Multiple Utilization of Mineral Resources, 2004

    (5):15-21.
    [17] 苏长明, 付继彤, 郭保雨. 黏土矿物及钻井液电动电位变化规律研究[J]. 钻井液与完井液,2002,19(6):1-4.

    SU Changming,FU Jitong, GUO Baoyu. Research on the changing tendency of zeta Potential of the clay minerals and drilling fluid[J]. Drilling Fluid & Completion Fluid,2002,19(6):1-4.
    [18] BIBAK K, KAPRON B M, SRINIVASAN V. MMH with arbitrary modulus is always almost universal[J]. Information Processing Letters,2016,116(7):481-483.
    [19] 杨建,付永强,陈鸿飞,等.页岩储层的岩石力学特性[J]. 天然气工业,2012,32(7):12-14.

    YANG Jian, FU Yongqiang, CHEN Hongfei,et al. Rock mechanical characteristics of shale reservoirs[J]. Natural Gas Industry,2012,32(7):12-14.
    [20] 韩辉,钟宁宁,焦淑静,等. 泥页岩孔隙的扫描电子显微镜观察[J]. 电子显微学报,2013,32(4):325-330.

    HAN Hui, ZHONG Ningning, JIAO Shujing, et al. Scanning electron microscope observation of pores in mudstone and shale[J]. Journal of Chinese Electron Microscopy Society,2013,32(4):325-330.
    [21] 蒋平,张贵才,葛际江,等. 润湿反转机理的研究进展[J]. 西安石油大学学报(自然科学版),2007,22(6):78-84. JIANG Ping, ZHANG Guicai, GE Jijiang, et al. Progress in the research of wettability reversal mechanism[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2007,22(6):78-84.
    [22] VAN OORT E,HALE A H,MODY F K,et al. Transport in shales and the design of improved waterbased shale drilling fluids[J]. SPE Drilling & Completion, 1996, 11(3):137-146.
    [23] 黄雪静,崔茂荣,周长虹,等. 钻井液生物毒性评价方法对比[J]. 油气田环境保护,2006,16(4):25-27.

    HUANG Xuejing, CUI Maorong, ZHOU Changhong, et al. Comparison of biological toxicity assessment methods for drilling fluids[J]. Environmental Protection of Oil & Gas Fields,2006,16(4):25-27.
  • 加载中
计量
  • 文章访问数:  498
  • HTML全文浏览量:  171
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-05
  • 刊出日期:  2018-07-30

目录

    /

    返回文章
    返回